Genetic Diversity and Population Structure of Nine Local Sheep Populations Bred in the Carpathia Area of Central Europe Revealed by Microsatellite Analysis

. 2025 Aug 15 ; 15 (16) : . [epub] 20250815

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40867728

Grantová podpora
MZE-RO0723 (V002) The Ministry of Agriculture of the Czech Republic

A necessary step towards the development of genetic diversity is the protection of the valuable genetic resources of farm animals that are at risk of extinction. We analyzed 375 individuals of nine local sheep breeds bred in Central Europe (Carpathia area) from Czech Republic, Slovakia, Poland, Ukraine, and Romania using a panel of 13 microsatellite markers to investigate genetic differences and evaluate the genetic structure among and within breeds, thereby improving future breeding and conservation strategies. The mean number of alleles was 8.84, the mean number of effective alleles was 4.76, and the polymorphism information content (PIC) was 0.79. Diversity was measured using principal coordinate analysis (PCoA) as well as genetic structure, which revealed two main clusters. The first cluster was the Czech Wallachian sheep (CVA) and the Świniarka (SWI). The second cluster consisted the Improved Wallachian sheep (IVA), the Šumava sheep (SUM), the Slovak Wallachian sheep (SVA), the Polish Mountain sheep (POG), the Uhruska sheep (UHR), the Ukrainian sheep (UKR) and the Tsurcana sheep (TUR). The values of genetic distance and the fixation coefficient indicate sufficient differences between the analyzed breeds (Gst = 0.052 and Fst = 0.063). Negative values of the inbreeding coefficient also confirmed the predominance of outbreeding (Fis = -0.015). The results obtained may be helpful in breeding programs and conservation plans for local sheep breeds, as their genetic resources must be preserved to maintain an adequate level of biodiversity in animal husbandry.

Zobrazit více v PubMed

Lawson Handley L., Byrne K., Santucci F., Townsend S., Taylor M., Bruford M.W., Hewitt G. Genetic structure of European sheep breeds. Heredity. 2007;99:620–631. doi: 10.1038/sj.hdy.6801039. PubMed DOI

Ciani E., Mastrangelo S., Da Silva A., Marroni F., Ferenčaković M., Ajmone-Marsan P., Baird H., Barbato M., Colli L., Delvento C., et al. On the Origin of European Sheep as Revealed by the Diversity of the Balkan Breeds and by Optimizing Population-Genetic Analysis Tools. Genet. Sel. Evol. 2020;52:25. doi: 10.1186/s12711-020-00545-7. PubMed DOI PMC

Gurgul A., Jasielczuk I., Miksza-Cybulska A., Kawęcka A., Szmatoła T., Krupiński J. Evaluation of Genetic Differentiation and Genome-Wide Selection Signatures in Polish Local Sheep Breeds. Livest. Sci. 2021;251:104635. doi: 10.1016/j.livsci.2021.104635. DOI

Machová K., Marina H., Arranz J.J., Pelayo R., Rychtářová J., Milerski M., Vostrý L., Suárez-Vega A. Genetic diversity of two native sheep breeds by genome-wide analysis of single nucleotide polymorphisms. Animal. 2023;17:100690. doi: 10.1016/j.animal.2022.100690. PubMed DOI

Ptáček M., Ducháček J., Stádník L., Fantová M. Analysis of Genotype, Dam’s Litter Size and Their Interaction on Selected Productive Traits of Origin Wallachian and Sumava Sheep in the Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun. 2017;65:473–479. doi: 10.11118/actaun201765020473. DOI

Peter C., Bruford M., Perez T., Dalamitra S., Hewitt G. Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds. Anim. Genet. 2007;38:37–44. doi: 10.1111/j.1365-2052.2007.01561.x. PubMed DOI

Kijas J.W., Townley D., Dalrymple B.P., Heaton M.P., Maddox J.F., McGrath A., Wilson P., Ingersoll R.G., McCulloch R., McWilliam S., et al. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS ONE. 2009;4:e4668. doi: 10.1371/journal.pone.0004668. PubMed DOI PMC

Kijas J.W., Lenstra J.A., Hayes B., Boitard S., Porto Neto L.R., San Cristobal M., Servin B., McCulloch R., Whan V., Gietzen K., et al. Genome-Wide Analysis of the World’s Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection. PLoS Biol. 2012;10:e1001258. doi: 10.1371/journal.pbio.1001258. PubMed DOI PMC

Kusza S., Ivankovic A., Ramljak J., Nagy I., Jávor A., Kukovics S. Genetic structure of Tsigai, Ruda, Pramenka and other local sheep in Southern and Eastern Europe. Small Rumin. Res. 2011;99:130–134. doi: 10.1016/j.smallrumres.2011.03.059. DOI

Odjakova T., Todorov P., Radoslavov G., Hristov P. Microsatellite Genotyping of Two Bulgarian Sheep Breeds. Diversity. 2022;14:210. doi: 10.3390/d14030210. DOI

Odjakova T., Todorov P., Kalaydzhiev G., Salkova D., Dundarova H., Radoslavov G., Hristov P. A Study on the Genetic Diversity and Subpopulation Structure of Three Bulgarian Mountainous Sheep Breeds, Based on Genotyping of Microsatellite Markers. Small Rumin. Res. 2023;226:107034. doi: 10.1016/j.smallrumres.2023.107034. DOI

Mihailova Y., Rusanov K., Rusanova M., Vassileva P., Atanassov I., Nikolov V., Todorovska E.G. Genetic Diversity and Population Structure of Bulgarian Autochthonous Sheep Breeds Revealed by Microsatellite Analysis. Animals. 2023;13:1878. doi: 10.3390/ani13111878. PubMed DOI PMC

Cortes O., Cañon J., Gama L.T. Applications of Microsatellites and Single Nucleotide Polymorphisms for the Genetic Characterization of Cattle and Small Rumin.: An Overview. Ruminants. 2022;2:456–470. doi: 10.3390/ruminants2040032. DOI

Laoun A., Harkat S., Lafri M., Gaouar S.B.S., Belabdi I., Ciani E., Groot M.D., Blanquet V., Leroy G., Rognon X., et al. Inference of breed structure in farm animals: Empirical comparison between SNP and microsatellite performance. Genes. 2020;11:57. doi: 10.3390/genes11010057. PubMed DOI PMC

Wanjala G., Astuti P.K., Bagi Z., Kichamu N., Strausz P., Kusza S. Assessing the Genomics Structure of Dorper and White Dorper Variants, and Dorper Populations in South AfricaandHungary. Biology. 2023;12:386. doi: 10.3390/biology12030386. PubMed DOI PMC

Olschewsky A., Hinrichs D. An overview of the use of genotyping techniques for assessing genetic diversity in local farm animal breeds. Animals. 2021;11:2016. doi: 10.3390/ani11072016. PubMed DOI PMC

Kawęcka A., Pasternak M., Miksza-Cybulska A., Puchała M. Native Sheep Breeds in Poland-Importance and Outcomes of Genetic Resources Protection Programmes. Animals. 2022;12:1510. doi: 10.3390/ani12121510. PubMed DOI PMC

Dudu A., Popa G.-O., Ghiță E., Pelmuș R., Lazăr C., Costache M., Georgescu S.E. Assessment of genetic diversity in main local sheep breeds from Romania using microsatellite markers. Arch. Anim. Breed. 2020;63:53–59. doi: 10.5194/aab-63-53-2020. PubMed DOI PMC

Kusza S., Dimov D., Nagy I., Bõsze Z., Jávor A., Kukovics S. Microsatellite analysis to estimate genetic relationships among five bulgarian sheep breeds. Genet. Mol. Biol. 2010;33:51–56. doi: 10.1590/S1415-47572010005000003. PubMed DOI PMC

Meyermans R., Gorssen W., Aerts N., Hooyberghs K., Chakkingal Bhaskaran B., Chapard L., Buys N., Janssens S. Genomic characterisation and diversity assessment of eight endangered Belgian sheep breeds. Animal. 2024;18:101315. doi: 10.1016/j.animal.2024.101315. PubMed DOI

FAO . In: The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture. Scherf B.D., Pilling D., editors. FAO Commission on Genetic Resources for Food and Agriculture Assess-Ments; Rome, Italy: 2015. [(accessed on 12 March 2025)]. Available online: http://reliefweb.int/report/world/second-report-state-worlds-animal-genetic-resources-food-and-agriculture.

Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC

Botstein D., White R.L., Skolnick M., Davis R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980;32:314. PubMed PMC

Liu K., Muse S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics. 2005;21:2128–2129. doi: 10.1093/bioinformatics/bti282. PubMed DOI

Nei M. Genetic distance between populations. Am. Nat. 1972;106:283–292. doi: 10.1086/282771. DOI

Rogers J.S. Measures of genetic similarity and genetic distance. Stud. Genet. 1972;7:145–153.

Cavalli-Sforza L.L., Edwards A.W. Phylogenetic analysis. Models and estimation procedures. Pt 1Am. J. Hum. Genet. 1967;19:233–257. PubMed PMC

Reynolds J., Weir B.S., Cockerham C. Estimation of the co-ancestry coefficient basis for a shortterm genetic distance. Genetics. 1983;105:767–779. doi: 10.1093/genetics/105.3.767. PubMed DOI PMC

Saitou N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987;4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454. PubMed DOI

Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC

Kopelman N.M., Mayzel J., Jakobsson M., Rosenberg N.A., Mayrose I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015;15:1179–1191. doi: 10.1111/1755-0998.12387. PubMed DOI PMC

Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI

Puechmaille S. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 2016;16:608–627. doi: 10.1111/1755-0998.12512. PubMed DOI

Li Y.L., Liu J.X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 2018;18:176–177. doi: 10.1111/1755-0998.12719. PubMed DOI

Kardos M., Taylor H.R., Ellegren H., Luikart G., Allendorf F.W. Genomics advances the study of inbreeding depression in the wild. Evol. Appl. 2016;9:1205–1218. doi: 10.1111/eva.12414. PubMed DOI PMC

Jandurová O.M., Kott T., Kottová B., Czerneková V., Milerski M. Genetic relationships among Šumava, Valachian and Improved Valachian sheep. Small Rumin. Res. 2005;57:157–165. doi: 10.1016/j.smallrumres.2004.06.021. DOI

Hristova D., Todorovska E., Vassilev D., Metodiev S., Popov I., Yablanski T., Zhelyazkov E. Microsatellites based genetic diversity and population structure of seven Bulgarian indigenous sheep breeds. Int. J. Curr. Microbiol. Appl. Sci. 2014;3:569–581.

Mihailova Y. Genetic diversity and structure of 2 indigenous sheep breeds (Kotel and Teteven) in Bulgaria using microsatellite markers. Biotechnol. Biotechnol. Equip. 2021;35:576–585. doi: 10.1080/13102818.2021.1903339. DOI

Phookan A., Das B., Das A., Islam R., Sharma M., Bharali K., Basumatary K. Morphology, morphometry and certain eggquality traits of indigenous ducks of North Easternregion of India. Int. J. Chem. Stud. 2018;6:3131–3133.

Yilmaz O., Sezenler T., Sevim S., Cemal I., Karaca O., Yaman Y., Karadag O. Genetic relationships among four Turkish sheep breeds using microsatellites. Turk. J. Vet. Anim. Sci. 2015;39:576–582. doi: 10.3906/vet-1411-46. DOI

Ligda C., Altarayrah J., Georgoudis A. Genetic analysis of Greek sheep breeds using microsatellite markers for setting conservation priorities. Small Rumin. Res. 2009;83:42–48. doi: 10.1016/j.smallrumres.2009.04.002. DOI

Kusza S., Nagy I., Sasvári Z., Stágel A., Németh T., Molnár A., Kume K., Bosze Z., Jávor A., Kukovics S. Genetic diversity and population structure of Tsigai and Zackel type of sheep breeds in the Central-, Eastern-and Southern-European regions. Small Rumin. Res. 2008;78:13–23. doi: 10.1016/j.smallrumres.2008.04.002. DOI

Ćurković M., Ramljak J., Ivanković S., Mioc B., Ivankovic A., Pavic V., Brka M., Veit-Kensch C., Medugorac I. The genetic diversity and structure of 18 sheep breeds exposed to isolation and selection. J. Anim. Breed. Genet. 2016;133:71–80. doi: 10.1111/jbg.12160. PubMed DOI

Marković M., Radonjić D., Zorc M., Đokić M., Marković B. Genetic Diversity of Montenegrin Local Sheep Breeds Based on Microsatellite Markers. Animals. 2022;12:3029. doi: 10.3390/ani12213029. PubMed DOI PMC

Machová K., Hofmanová B., Rychtářová J., Vostrý L., Moravčíková N., Kasarda R. Genetic Variability Analysis of 26 Sheep Breeds in the Czech Republic. Acta Fytotech. Zootech. 2020;23:38–45. doi: 10.15414/afz.2020.23.mi-fpap.38-45. DOI

Moravcikova N., Kasarda R., Kukuckova V., Vostry L., Kadlecík O. Genetic diversity of Old Kladruber and Nonius horse populations through microsatellite variation analysis. Acta. Agric. Slov. 2016;107:45–49.

Mastranestasis I., Ekateriniadou L., Ligda C., Theodorou K. Genetic diversity and structure of the Lesvos sheep breed. Small Rumin. Res. 2015;130:54–59. doi: 10.1016/j.smallrumres.2015.07.015. DOI

Ocampo R., Cardona H., Martínez R. Genetic diversity of Colombian sheep by microsatellite markers. Chil. J. Agric. Res. 2016;76:40–47. doi: 10.4067/S0718-58392016000100006. DOI

Salamon D., Gutierrez-Gil B., Arranz J., Barreta J., Batinic V., Dzidic A. Genetic Diversity and Differentiation of 12 Eastern Adriatic and Western Dinaric Native Sheep Breeds Using Microsatellites. Animal. 2014;8:200–207. doi: 10.1017/S1751731113002243. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...