Prevention of the Progression of lupus Nephritis in MRL/lpr Mice by Modulating miR-9-5p/Foxo1 Axis
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
40886372
PubMed Central
PMC12440323
DOI
10.33549/physiolres.935539
PII: 935539
Knihovny.cz E-zdroje
- MeSH
- forkhead box protein O1 * metabolismus genetika MeSH
- ledviny metabolismus patologie MeSH
- mikro RNA * metabolismus genetika antagonisté a inhibitory MeSH
- myši inbrední MRL lpr MeSH
- myši MeSH
- nefritida při lupus erythematodes * metabolismus patologie prevence a kontrola genetika MeSH
- progrese nemoci MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- forkhead box protein O1 * MeSH
- Foxo1 protein, mouse MeSH Prohlížeč
- mikro RNA * MeSH
- MIRN9 microRNA, mouse MeSH Prohlížeč
MiR-9-5p is up-regulated in lupus nephritis (LN) patients and targets Foxo1 that is a protective factor against renal disorders. In the current study, the role of miR-9-5p/Foxo1 LN progression was assessed and the associated mechanism was explored. The levels of LN-associated miRs were firstly detected in MRL/lpr mice. Then the effect of miR-9-5p modulation on the viability of SV40 MES 13 cells was detected. MRL/lpr mice were treated with miR agomirs or antagonists, and effects on renal structure and function were assessed. MiR-9-5p was selected as the potential target, which was up-regulated in MRL/lpr mice, contributing to the suppressed expression of Foxo1. The modulation of miR-9-5p in vitro influenced the viability of SV40 MES 13 cells. The progression of LN in mice was also associated with the increased level of miR-9-5p and the decreased level of Foxo1. The administration of miR agomirs significantly impaired renal structure and function impairments associated with LN, along with the suppressed expression of Foxo1, while antagonists improved these features by up-regulating Foxo1 level. The current study demonstrated that miR-9-5p showed LN promoting effects, which depended on the inhibition of Foxo1.
Zobrazit více v PubMed
Maroz N, Segal MS. Lupus nephritis and end-stage kidney disease. Am J Med Sci. 2013;346(4):319–323. doi: 10.1097/MAJ.0b013e31827f4ee3. PubMed DOI
Ward MM. Changes in the incidence of end-stage renal disease due to lupus nephritis, 1982–1995. Arch Intern Med. 2000;160:3136–3140. doi: 10.1001/archinte.160.20.3136. PubMed DOI
Okpechi IG, Ameh OI. Lupus nephritis: An approach to diagnosis and treatment in South Africa. S Afr Med J. 2015;105:1071–1074. doi: 10.7196/SAMJ.2015.v105i12.10224. PubMed DOI
Tang Y, Zhang X, Ji L, Mi X, Liu F, Yang L, Qin W. Clinicopathological and outcome analysis of adult lupus nephritis patients in China. Int Urol Nephrol. 2015;47:513–520. doi: 10.1007/s11255-014-0903-y. PubMed DOI
Hanly JG, O’Keeffe AG, Su L, Urowitz MB, Romero-Diaz J, Gordon C, Bae SC, Bernatsky S, Clarke AE, et al. The frequency and outcome of lupus nephritis: results from an international inception cohort study. Rheumatology (Oxford) 2016;55:252–262. doi: 10.1093/rheumatology/kev311. PubMed DOI PMC
Balajkova V, Olejarova M, Moravcova R, Kozelek P, Posmurova M, Hulejova H, Senolt L. Is serum TWEAK a useful biomarker of neuropsychiatric systemic lupus erythematosus? Phys Res. 2020;69:339–346. doi: 10.33549/physiolres.934308. DOI
Dall’Era M. Treatment of lupus nephritis: current paradigms and emerging strategies. Curr Opin Rheumatol. 2017;29:241–247. doi: 10.1097/BOR.0000000000000381. PubMed DOI
Imran TF, Yick F, Verma S, Estiverne C, Ogbonnaya-Odor C, Thiruvarudsothy S, Reddi AS, Kothari N. Lupus nephritis: an update. Clin Exp Nephrol. 2016;20:1–13. doi: 10.1007/s10157-015-1179-y. PubMed DOI
Cervera R, Khamashta MA, Font J, Sebastiani GD, Gil A, Lavilla P, Mejía JC, Aydintug AO, Chwalinska-Sadowska H, et al. Morbidity and mortality in systemic lupus erythematosus during a 10-year period: a comparison of early and late manifestations in a cohort of 1,000 patients. Medicine (Baltimore) 2003;82:299–308. doi: 10.1097/01.md.0000091181.93122.55. PubMed DOI
Schieppati A, Remuzzi G. Novel therapies of lupus nephritis. Curr Opin Nephrol Hypertens. 2008;17:156–161. doi: 10.1097/MNH.0b013e3282f4e54d. PubMed DOI
Lee SB, Kalluri R. Mechanistic connection between inflammation and fibrosis. Kidney Int Suppl. 2010:S22–26. doi: 10.1038/ki.2010.418. DOI
Yuan XK, Ni PS, Yan ZH, Yu Z, Wang ZZ, Zhang CK, Li FH, Yu XM. Effects of life-long exercise on age-related inflammation, apoptosis, oxidative stress, ferroptosis markers, and NRF2/KAEP 1/Klotho Pathway in Rat Kidneys. Physiol Res. 2024;73:577–591. doi: 10.33549/physiolres.935290. PubMed DOI PMC
Tili E, Michaille JJ, Calin GA. Expression and function of micro-RNAs in immune cells during normal or disease state. Int J Med Sci. 2008;5:73–79. doi: 10.7150/ijms.5.73. PubMed DOI PMC
Vinuesa CG, Rigby RJ, Yu D. Logic and extent of miRNA-mediated control of autoimmune gene expression. Int Rev Immunol. 2009;28:112–138. doi: 10.1080/08830180902934909. PubMed DOI
Mo W, Jin J, Wang X, Luan W, Yan J, Long X. MicroRNA-206 Contributes to the Progression of Preeclampsia by Suppressing the Viability and Mobility of Trophocytes via the Inhibition of AGTR1. Physiological research. 2023;72:597–606. doi: 10.33549/physiolres.935131. PubMed DOI PMC
Liao W, He XJ, Zhang W, Chen YL, Yang J, Xiang W, Ding Y. MiR-145 participates in the development of lupus nephritis by targeting CSF1 to regulate the JAK/STAT signaling pathway. Cytokine. 2022;154:155877. doi: 10.1016/j.cyto.2022.155877. PubMed DOI
Guo A, Sun Y, Xu X, Xing Q. MicroRNA-30a Targets Notch1 to Alleviate Podocyte Injury in Lupus Nephritis. Immunol Invest. 2022;51:1694–1706. doi: 10.1080/08820139.2022.2027440. PubMed DOI
Chafin CB, Reilly CM. MicroRNAs implicated in the immunopathogenesis of lupus nephritis. Clin Dev Immunol. 2013;2013:430239. doi: 10.1155/2013/430239. PubMed DOI PMC
Ermakov EA, Kabirova EM, Sizikov AE, Buneva VN, Nevinsky GA. IgGs-Abzymes from the Sera of Patients with Systemic Lupus Erythematosus Hydrolyzed miRNAs. J Inflamm Res. 2020;13:681–699. doi: 10.2147/JIR.S258558. PubMed DOI PMC
Hong YA, Bae SY, Ahn SY, Kim J, Kwon YJ, Jung WY, Ko GJ. Resveratrol Ameliorates Contrast Induced Nephropathy Through the Activation of SIRT1-PGC-1α-Foxo1 Signaling in Mice. Kidney Blood Press Res. 2017;42:641–653. doi: 10.1159/000481804. PubMed DOI
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic acids research. 2016;44:D457–462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: a journal of integrative biology. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC
Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43:D1049–1056. doi: 10.1093/nar/gku1179. PubMed DOI PMC
Almaani S, Meara A, Rovin BH. Update on Lupus Nephritis. Clin J Am Soc Nephrol. 2017;12:825–835. doi: 10.2215/CJN.05780616. PubMed DOI PMC
Hakkim A, Fürnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, Herrmann M, Voll RE, Zychlinsky A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A. 2010;107:9813–9818. doi: 10.1073/pnas.0909927107. PubMed DOI PMC
So BYF, Yap DYH, Chan TM. MicroRNAs in lupus nephritis-role in disease pathogenesis and clinical applications. Int J Mol Sci. 2021:22. doi: 10.3390/ijms221910737. PubMed DOI PMC