Manganese and phosphate removal from culture medium during the growth of the bacterium Sphaerotilus montanus

. 2025 Sep 01 ; () : . [epub] 20250901

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40889085
Odkazy

PubMed 40889085
DOI 10.1007/s12223-025-01323-y
PII: 10.1007/s12223-025-01323-y
Knihovny.cz E-zdroje

The ability of bacteria to absorb metal ions and phosphates allows the development of processes for bioremediation of the environment and wastewater from heavy metals and excess phosphates. In this work, the ability of the "iron bacterium" Sphaerotilus montanus VKM B-2519 to remove manganese, iron, and phosphate from culture medium was studied. The bacterium removed Mn2+ but not Fe2+ from the culture medium during growth. At an initial concentration of 3 mmol/L Mn2+, about 40% of phosphate and no more than 10% of manganese remained in the medium after cultivation of S. montanus for the stationary stage. Inorganic polyphosphate did not contribute to the removal of phosphate by S. montanus. In the presence of excess Mn2+, S. montanus formed Mn3(PO4)2 as a precipitate. It was confirmed by both chemical analysis and EDX. In the presence of excess Mn2+, S. montanus secreted phosphorylated exopolysaccharide into the culture medium. The data suggested that S. montanus VKM B-2519 is a prospective species for developing phosphate and manganese removal and biological sedimentation of manganese phosphate.

Zobrazit více v PubMed

Andreeva N, Ledova L, Ryazanova L et al (2019) Ppn2 endopolyphosphatase overexpressed in Saccharomyces cerevisiae: comparison with Ppn1, Ppx1, and Ddp1 polyphosphatases. Biochimie 163:101–107. https://doi.org/10.1016/j.biochi.2019.06.001 PubMed DOI

Arora H, Peldszus S, Lamba-Rautapuro N et al (2025) Evaluating manganese removal in groundwater using pilot scale biofilters: the role of filter media characteristics during start-up. Water Res 268:122711. https://doi.org/10.1016/j.watres.2024.122711 PubMed DOI

Arshad F, Takeda M, Yoshitake H (2022) Effective adsorption of perrhenate ions on the filamentous sheath-forming bacteria, Sphaerotilus montanus, Sphaerotilus natans and Thiothrix fructosivorans. J Appl Microbiol 133:607–618. https://doi.org/10.1111/jam.15590 PubMed DOI

Avila DS, Puntel RL, Aschner M (2013) Manganese in health and disease. In: Sigel A, Sigel H, Sigel RKO (eds) Interrelations between essential metal ions and human diseases. Springer, Netherlands, Dordrecht, pp 199–227

Baj J, Flieger W, Barbachowska A et al (2023) Consequences of disturbing manganese homeostasis. Int J Mol Sci 24:14959. https://doi.org/10.3390/ijms241914959 PubMed DOI PMC

Boniardi G, Close K, Turolla A et al (2024) Assessment of three different approaches for integrating phosphorus recovery from sewage sludge and derived products in existing wastewater treatment plants. Bioresour Technol 402:130822. https://doi.org/10.1016/j.biortech.2024.130822 PubMed DOI

Bosma EF, Rau MH, van Gijtenbeek LA, Siedler S (2021) Regulation and distinct physiological roles of manganese in bacteria. FEMS Microbiol Rev 45:fuab028. https://doi.org/10.1093/femsre/fuab028 PubMed DOI PMC

Cai Y, Yang K, Qiu C et al (2023) A review of Manganese-oxidizing bacteria (MnOB): applications, future concerns, and challenges. Int J Environ Res Public Health 20:1272. https://doi.org/10.3390/ijerph20021272 PubMed DOI PMC

Chen J, Liu Y, Diep P, Mahadevan R (2022) Genetic engineering of extremely acidophilic Acidithiobacillus species for biomining: progress and perspectives. J Hazard Mater 438:129456. https://doi.org/10.1016/j.jhazmat.2022.129456 PubMed DOI

Chubar N, Avramut C, Visser T (2015) Formation of manganese phosphate and manganese carbonate during long-term sorption of Mn PubMed DOI

Clarke C, Upson S (2017) A global portrait of the manganese industry—a socioeconomic perspective. Neurotoxicology 58:173–179. https://doi.org/10.1016/j.neuro.2016.03.013 PubMed DOI

Das AP, Ghosh S (2022) Role of microorganisms in extenuation of mining and industrial wastes. Geomicrobiol J 39:173–175. https://doi.org/10.1080/01490451.2022.2038953 DOI

Das AP, Sukla LB, Pradhan N, Nayak S (2011) Manganese biomining: a review. Bioresour Technol 102:7381–7387. https://doi.org/10.1016/j.biortech.2011.05.018 PubMed DOI

Earle MR, Stoddart AK, Gagnon GA (2023) Raw water biofiltration for surface water manganese control. Sci Rep 13:9020. https://doi.org/10.1038/s41598-023-36348-1 PubMed DOI PMC

Ehrlich HL (1980) Different forms of microbial manganese oxidation and reduction and their environmental significance. Biogeochemistry of ancient and modern environments. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 327–332

Ghose D, Jones RS (2024) Extracellular phosphate modulation and polyphosphate accumulation by Corynebacterium matruchotii and Streptococcus mutans. Dent J 12:366. https://doi.org/10.3390/dj12110366 DOI

Ghosh S, Mohanty S, Nayak S et al (2016) Molecular identification of indigenous manganese solubilising bacterial biodiversity from manganese mining deposits. J Basic Microbiol 56:254–262. https://doi.org/10.1002/jobm.201500477 PubMed DOI

Ghosh S, Tripathy B, Dey S, Das AP (2023) Comparative investigation of fungal and bacterial manganese biomining mechanisms. In: Manganese mining microorganisms. Elsevier, pp 99–115

Gridneva E, Chernousova E, Dubinina G et al (2011) Taxonomic investigation of representatives of the genus Sphaerotilus: descriptions of Sphaerotilus montanus sp. nov., Sphaerotilus hippei sp. nov., Sphaerotilus natans subsp. natans subsp. nov. and Sphaerotilus natans subsp. sulfidivorans subsp. nov., and an emended description of the genus Sphaerotilus. Int J Syst Evol Microbiol 61:916–925. https://doi.org/10.1099/ijs.0.023887-0 PubMed DOI

Guo F, Wang M, Huang M et al (2023) Manganese efflux achieved by MetA and MetB affects oxidative stress resistance and iron homeostasis in Riemerella anatipestifer. Appl Environ Microbiol 89:e01835-e1922. https://doi.org/10.1128/aem.01835-22 PubMed DOI PMC

Hirota R, Kuroda A, Kato J, Ohtake H (2010) Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses. J Biosci Bioeng 109:423–432. https://doi.org/10.1016/j.jbiosc.2009.10.018 PubMed DOI

Hohle TH, O’Brian MR (2014) Magnesium-dependent processes are targets of bacterial manganese toxicity. Mol Microbiol 93:736–747. https://doi.org/10.1111/mmi.12687 PubMed DOI PMC

Kashiwabara D, Kondo K, Usami R et al (2021) Structural determination of the sheath-forming polysaccharide of Sphaerotilus montanus using thiopeptidoglycan lyase which recognizes the 1,4 linkage between α-d-GalN and β-d-GlcA. Int J Biol Macromol 183:992–1001. https://doi.org/10.1016/j.ijbiomac.2021.05.001 PubMed DOI

Keasling JD (1997) Regulation of intracellular toxic metals and other cations by hydrolysis of polyphosphate. Ann N Y Acad Sci 829:242–249. https://doi.org/10.1111/j.1749-6632.1997.tb48579.x PubMed DOI

Keasling JD, Van Dien SJ, Trelstad P et al (2000) Application of polyphosphate metabolism to environmental and biotechnological problems. Biochem Biokhimiia 65:324–331

Khadse GK, Patni PM, Labhasetwar PK (2015) Removal of iron and manganese from drinking water supply. Sustain Water Resour Manage 1:157–165. https://doi.org/10.1007/s40899-015-0017-4 DOI

Kulakovskaya T (2018) Inorganic polyphosphates and heavy metal resistance in microorganisms. World J Microbiol Biotechnol 34:139. https://doi.org/10.1007/s11274-018-2523-7 PubMed DOI

Kulakovskaya TV, Andreeva NA, Karpov AV et al (1999) Hydrolysis of tripolyphosphate by purified exopolyphosphatase from Saccharomyces cerevisiae cytosol: kinetic model. Biochem Biokhimiia 64:990–993

Kulakovskaya T, Ryazanova L, Zvonarev A et al (2018) The biosorption of cadmium and cobalt and iron ions by yeast Cryptococcus humicola at nitrogen starvation. Folia Microbiol (Praha) 63:507–510. https://doi.org/10.1007/s12223-018-0583-6 PubMed DOI

Kulakovskaya T, Zvonarev A, Laurinavichius K et al (2019) Effect of Fe on inorganic polyphosphate level in autotrophic and heterotrophic cells of Rhodospirillum rubrum. Arch Microbiol 201:1307–1312. https://doi.org/10.1007/s00203-019-01697-x PubMed DOI

Li G, Su Y, Wu B et al (2022) Initial formation and accumulation of manganese deposits in drinking water pipes: investigating the role of microbial-mediated processes. Environ Sci Technol 56:5497–5507. https://doi.org/10.1021/acs.est.1c08293 PubMed DOI

Lichko LP, Okorokov LA, Kulaev IS (1982) Participation of vacuoles in regulation of levels of K+, Mg2+ and orthophosphate ions in cytoplasm of the yeast Saccharomyces carlsbergensis. Arch Microbiol 132:289–293. https://doi.org/10.1007/BF00407968 DOI

Marshall JM, Flechtner AD, La Perle KM, Gunn JS (2014) Visualization of extracellular matrix components within sectioned Salmonella biofilms on the surface of human gallstones. PLoS One 9:e89243. https://doi.org/10.1371/journal.pone.0089243 PubMed DOI PMC

Martín JF, Liras P (2021) Molecular mechanisms of phosphate sensing, transport and signalling in Streptomyces and related Actinobacteria. Int J Mol Sci 22:1129. https://doi.org/10.3390/ijms22031129 PubMed DOI PMC

McMahon KD, Read EK (2013) Microbial contributions to phosphorus cycling in eutrophic lakes and wastewater. Annu Rev Microbiol 67:199–219. https://doi.org/10.1146/annurev-micro-092412-155713 PubMed DOI

Navarro CA, Von Bernath D, Jerez CA (2013) Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46:363–371. https://doi.org/10.4067/S0716-97602013000400008 PubMed DOI

Omelon S, Georgiou J, Habraken W (2016) A cautionary (spectral) tail: red-shifted fluorescence by DAPI–DAPI interactions. Biochem Soc Trans 44:46–49. https://doi.org/10.1042/BST20150231 PubMed DOI

Patil DS, Chavan SM, Oubagaranadin JUK (2016) A review of technologies for manganese removal from wastewaters. J Environ Chem Eng 4:468–487. https://doi.org/10.1016/j.jece.2015.11.028 DOI

Pi H, Wendel BM, Helmann JD (2020) Dysregulation of magnesium transport protects Bacillus subtilis against manganese and cobalt intoxication. J Bacteriol. https://doi.org/10.1128/JB.00711-19 PubMed DOI PMC

Piazza A, Ciancio Casalini L, Pacini VA et al (2019) Environmental bacteria involved in manganese(II) oxidation and removal from groundwater. Front Microbiol 10:119. https://doi.org/10.3389/fmicb.2019.00119 PubMed DOI PMC

Poddar D, De Jonge MD, Howard DL et al (2021) Manganese accumulation in probiotic Lactobacillus paracasei ATCC 55544 analyzed by synchrotron X-ray fluorescence microscopy and impact of accumulation on the bacterial viability following encapsulation. Food Res Int 147:110528. https://doi.org/10.1016/j.foodres.2021.110528 PubMed DOI

Roy S, Petersen JF, Müller S et al (2025) Wastewater biorefineries: exploring biological phosphorus removal and integrated recovery solutions. Curr Opin Biotechnol 92:103266. https://doi.org/10.1016/j.copbio.2025.103266 PubMed DOI

Serafim LS, Lemos PC, Levantesi C et al (2002) Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. J Microbiol Methods 51:1–18. https://doi.org/10.1016/S0167-7012(02)00056-8 PubMed DOI

Smirnov A, Suzina N, Chudinova N et al (2005) Formation of insoluble magnesium phosphates during growth of the archaea Halorubrum distributum and Halobacterium salinarium and the bacterium Brevibacterium antiquum. FEMS Microbiol Ecol 52:129–137. https://doi.org/10.1016/j.femsec.2004.10.012 PubMed DOI

Sorokin II (1971) Microflora of iron-manganese concretions from the ocean bottom. Mikrobiologiia 40:563–566 PubMed

Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–428. https://doi.org/10.1016/j.tim.2005.07.009 PubMed DOI

Tobiason JE, Bazilio A, Goodwill J et al (2016) Manganese removal from drinking water sources. Curr Pollut Rep 2:168–177. https://doi.org/10.1007/s40726-016-0036-2 DOI

Ustyuzhanina NE, Kulakovskaya EV, Kulakovskaya TV et al (2018) Mannan and phosphomannan from Kuraishia capsulata yeast. Carbohydr Polym 181:624–632. https://doi.org/10.1016/j.carbpol.2017.11.103 PubMed DOI

Wegner C-E, Westermann M, Steiniger F et al (2021) Extracellular and intracellular lanthanide accumulation in the methylotrophic Beijerinckiaceae bacterium RH AL1. Appl Environ Microbiol 87:e03144–20. https://doi.org/10.1128/AEM.03144-20 PubMed DOI PMC

Wu H, Xing Z, Zhan G (2024) Dissolved oxygen drives heterotrophic microorganism succession to regulate low carbon source wastewater treatment enhanced by slurry. J Environ Manage 366:121804. https://doi.org/10.1016/j.jenvman.2024.121804 PubMed DOI

Xu F, Li P (2024) Biogeochemical mechanisms of iron (Fe) and manganese (Mn) in groundwater and soil profiles in the Zhongning section of the Weining Plain (northwest China). Sci Total Environ 939:173506. https://doi.org/10.1016/j.scitotenv.2024.173506 PubMed DOI

Yang T, Xue Y, Liu X, Zhang Z (2022) Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: a review. Process Saf Environ Prot 157:509–526. https://doi.org/10.1016/j.psep.2021.10.031 DOI

Yao W, Millero FJ (1996) Adsorption of phosphate on manganese dioxide in seawater. Environ Sci Technol 30:536–541. https://doi.org/10.1021/es950290x DOI

Yuan Z, Pratt S, Batstone DJ (2012) Phosphorus recovery from wastewater through microbial processes. Curr Opin Biotechnol 23:878–883. https://doi.org/10.1016/j.copbio.2012.08.001 PubMed DOI

Zeinert R, Martinez E, Schmitz J et al (2018) Structure–function analysis of manganese exporter proteins across bacteria. J Biol Chem 293:5715–5730. https://doi.org/10.1074/jbc.M117.790717 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...