Comparison of Cytotoxicity and Photocatalytic Properties of Iron Vanadate Nanoparticles with Commercial Catalysts: For the Degradation of Microplastics and Bacterial Inactivation Application
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40893278
PubMed Central
PMC12392196
DOI
10.1021/acsomega.5c02744
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Microplastics (MPs) and the development of associated antibiotic-resistant bacteria are of serious concern. Conventional water treatment methodologies do not sufficiently address the issue of MPs and MPs-attached bacteria. The photocatalytic process is a promising technique that utilizes solar light to generate HO● radicals for the degradation of MPs and inactivation of microorganisms. In this work, the iron-vanadate (FeVO4, IVAN) nanoparticles prepared by the coprecipitation and a subsequent freeze-drying technique were tested for their cytotoxicity and photocatalytic activity in the degradation of MPs and inactivation of bacteria. Cytotoxicity of the prepared IVAN catalyst showed moderate toxicity levels at a concentration of 12.5 μg/mL. Photocatalytic degradation of catalysts evaluated using attenuated total reflection infrared (ATR-IR) spectroscopy revealed the overall highest increase in the carbonyl index (CI) and peroxyl index (PI) for the IVAN nanoparticles compared with commercial catalysts. The scavenging experiments confirmed that HO● and O2 ●- were the potential main reactive oxygen species produced during the photocatalytic process using IVAN. Furthermore, nuclear magnetic resonance (NMR) spectra proved an oxidative degradation of polystyrene (PS) MPs. Apparently, leaching of Fe and V ions closer to the acceptable toxicity levels was detected by using inductively coupled plasma optical emission spectrometry (ICP-OES). Interestingly, IVAN exhibited inhibition of the Staphylococcus aureus USA300 biofilm in both dark and light conditions. Therefore, our investigation of IVAN and commercial photocatalysts could give insights into the preparation of efficient catalysts for treating MPs and bacteria in water.
Department of Microbiology Faculty of Medicine Wroclaw Medical University Wroclaw 50 368 Poland
Institute of Inorganic Chemistry of the Czech Academy of Sciences Husinec Řež 250 68 Czech Republic
Zobrazit více v PubMed
Barnes D. K. A., Galgani F., Thompson R. C., Barlaz M.. Accumulation and Fragmentation of Plastic Debris in Global Environments. Philos. Trans. R. Soc., B. 2009;364(1526):1985–1998. doi: 10.1098/rstb.2008.0205. PubMed DOI PMC
Kiran B. R., Kopperi H., Venkata Mohan S.. Micro/Nano-Plastics Occurrence, Identification, Risk Analysis and Mitigation: Challenges and Perspectives. Rev. Environ. Sci. Biotechnol. 2022;21(1):169–203. doi: 10.1007/s11157-021-09609-6. PubMed DOI PMC
Strungaru S.-A., Jijie R., Nicoara M., Plavan G., Faggio C.. Micro- (Nano) Plastics in Freshwater Ecosystems: Abundance, Toxicological Impact and Quantification Methodology. TrAC, Trends Anal. Chem. 2019;110:116–128. doi: 10.1016/j.trac.2018.10.025. DOI
Shi H., Frias J., El-Din H Sayed A., De-la-Torre G. E., Jong M.-C., Uddin S. A., Rajaram R., Chavanich S., Najii A., Fernández-Severini M. D., Ibrahim Y. S., Su L.. Small Plastic Fragments: A Bridge between Large Plastic Debris and Micro- & Nano-Plastics. TrAC, Trends Anal. Chem. 2023;168:117308. doi: 10.1016/j.trac.2023.117308. DOI
Monira S., Roychand R., Bhuiyan M. A., Pramanik B. K.. Role of Water Shear Force for Microplastics Fragmentation into Nanoplastics. Environ. Res. 2023;237:116916. doi: 10.1016/j.envres.2023.116916. PubMed DOI
Meijer L. J. J., Van Emmerik T., Van Der Ent R., Schmidt C., Lebreton L.. More than 1000 Rivers Account for 80% of Global Riverine Plastic Emissions into the Ocean. Sci. Adv. 2021;7(18):eaaz5803. doi: 10.1126/sciadv.aaz5803. PubMed DOI PMC
Hahladakis J. N., Velis C. A., Weber R., Iacovidou E., Purnell P.. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018;344:179–199. doi: 10.1016/j.jhazmat.2017.10.014. PubMed DOI
Yu F., Yang C., Zhu Z., Bai X., Ma J.. Adsorption Behavior of Organic Pollutants and Metals on Micro/Nanoplastics in the Aquatic Environment. Sci. Total Environ. 2019;694:133643. doi: 10.1016/j.scitotenv.2019.133643. PubMed DOI
Yu Y., Mo W. Y., Luukkonen T.. Adsorption Behaviour and Interaction of Organic Micropollutants with Nano and Microplastics – A Review. Sci. Total Environ. 2021;797:149140. doi: 10.1016/j.scitotenv.2021.149140. PubMed DOI
Zhang Y., Lu J., Wu J., Wang J., Luo Y.. Potential Risks of Microplastics Combined with Superbugs: Enrichment of Antibiotic Resistant Bacteria on the Surface of Microplastics in Mariculture System. Ecotoxicol. Environ. Saf. 2020;187:109852. doi: 10.1016/j.ecoenv.2019.109852. PubMed DOI
Luo T., Dai X., Wei W., Xu Q., Ni B.-J.. Microplastics Enhance the Prevalence of Antibiotic Resistance Genes in Anaerobic Sludge Digestion by Enriching Antibiotic-Resistant Bacteria in Surface Biofilm and Facilitating the Vertical and Horizontal Gene Transfer. Environ. Sci. Technol. 2023;57(39):14611–14621. doi: 10.1021/acs.est.3c02815. PubMed DOI
Pham D. N., Clark L., Li M.. Microplastics as Hubs Enriching Antibiotic-Resistant Bacteria and Pathogens in Municipal Activated Sludge. J. Hazard. Mater. Lett. 2021;2:100014. doi: 10.1016/j.hazl.2021.100014. DOI
Zhou S., Zhu Y., Yan Y., Wang W., Wang Y.. Deciphering Extracellular Antibiotic Resistance Genes (eARGs) in Activated Sludge by Metagenome. Water Res. 2019;161:610–620. doi: 10.1016/j.watres.2019.06.048. PubMed DOI
Reddy A. S., Nair A. T.. The Fate of Microplastics in Wastewater Treatment Plants: An Overview of Source and Remediation Technologies. Environ. Technol. Innovation. 2022;28:102815. doi: 10.1016/j.eti.2022.102815. DOI
Ali I., Ding T., Peng C., Naz I., Sun H., Li J., Liu J.. Micro- and Nanoplastics in Wastewater Treatment Plants: Occurrence, Removal, Fate, Impacts and Remediation Technologies – A Critical Review. Chem. Eng. J. 2021;423:130205. doi: 10.1016/j.cej.2021.130205. DOI
Klein S., Pipes S., Lovell C. R.. Occurrence and Significance of Pathogenicity and Fitness Islands in Environmental Vibrios. AMB Express. 2018;8(1):177. doi: 10.1186/s13568-018-0704-2. PubMed DOI PMC
Ahmed R., Hamid A. K., Krebsbach S. A., He J., Wang D.. Critical Review of Microplastics Removal from the Environment. Chemosphere. 2022;293:133557. doi: 10.1016/j.chemosphere.2022.133557. PubMed DOI
Chen Z., Liu X., Wei W., Chen H., Ni B.-J.. Removal of Microplastics and Nanoplastics from Urban Waters: Separation and Degradation. Water Res. 2022;221:118820. doi: 10.1016/j.watres.2022.118820. PubMed DOI
Luo Y., Zheng H., Li X., Li F., Tang H., She X.. Modulating Reactive Oxygen Species in O, S Co-Doped C3N4 to Enhance Photocatalytic Degradation of Microplastics. Acta Phys.-Chim. Sin. 2025;41(6):100052. doi: 10.1016/j.actphy.2025.100052. DOI
Jung Y. J., Kim I. Y.. Recent Advances and Protocol Summaries for Degradation of Polyethylene Microplastics Using TiO2-based Photocatalysts. Bull. Korean Chem. Soc. 2025;46(3):198–210. doi: 10.1002/bkcs.70004. DOI
Liu L., Liu B., Lu Y., Jin X., Chen B., Wang C., Ge Y., Li Z.. Bandgap Engineered Carboxymethylated Lignin Cuprous Oxide Nanocomposites for Enhanced Visible Light Photocatalytic Degradation of Microplastics. Appl. Surf. Sci. 2025;687:162278. doi: 10.1016/j.apsusc.2024.162278. DOI
Lu Y., Dong Y., Liu W., Jin Q., Lin H.. Piezo-Photocatalytic Enhanced Microplastic Degradation on Hetero-Interpenetrated Fe1–xS/FeMoO4/ MoS2 by Producing H2O2 and Self-Fenton Action. Chem. Eng. J. 2025;508:160935. doi: 10.1016/j.cej.2025.160935. DOI
Shi C., Geng J., Qu X., Niu F., Yang J., Wang J.. Experimental Study on Enhanced Magnetic Removal of Microplastics in Water Using Modified Maifanite. J. Environ. Chem. Eng. 2025;13(2):116014. doi: 10.1016/j.jece.2025.116014. DOI
Mahmoud S. E. M. E., Abdel-Fattah T. M., Mahmoud M. E., Díaz E.. Efficient Removal Performance of Polystyrene Microplastics from Strongly Acidic Solutions by Two Functionalized Nanosized Biochars Derived from Low-Cost Sustainable Sources. Sci. Total Environ. 2025;969:178892. doi: 10.1016/j.scitotenv.2025.178892. PubMed DOI
Zhang X., Zhang M., Luo C., Li Y., Zhang L., Li C., Zhang X., Liao J., Zhou W.. Cs3Bi2Br9/BiOCl S-Scheme Heterojunction Photocatalysts with Solid Built-in Electric Field for Efficient Polystyrene Microplastics Degradation. Appl. Catal., B. 2025;371:125288. doi: 10.1016/j.apcatb.2025.125288. DOI
Li Y., Li Y., Huang L., Liu S., Zhu M., Qiu L., Huang J., Fu Y., Huang L.. Synergistic Photocatalysis for Bacteria Inactivation and Organic Pollutant Removal by S-Scheme Heterojunction InVO4/Bi5O7I: Performance Evaluation and Mechanism Investigation. J. Colloid Interface Sci. 2025;677:234–249. doi: 10.1016/j.jcis.2024.08.063. PubMed DOI
García-Muñoz P., Allé P. H., Bertoloni C., Torres A., De La Orden M. U., Urreaga J. M., Dziurla M.-A., Fresno F., Robert D., Keller N.. Photocatalytic Degradation of Polystyrene Nanoplastics in Water. A Methodological Study. J. Environ. Chem. Eng. 2022;10(4):108195. doi: 10.1016/j.jece.2022.108195. DOI
Domínguez-Jaimes L. P., Cedillo-González E. I., Luévano-Hipólito E., Acuña-Bedoya J. D., Hernández-López J. M.. Degradation of Primary Nanoplastics by Photocatalysis Using Different Anodized TiO2 Structures. J. Hazard. Mater. 2021;413:125452. doi: 10.1016/j.jhazmat.2021.125452. PubMed DOI
Chattopadhyay P., Ariza-Tarazona M. C., Cedillo-González E. I., Siligardi C., Simmchen J.. Combining Photocatalytic Collection and Degradation of Microplastics Using Self-Asymmetric Pac-Man TiO2 . Nanoscale. 2023;15(36):14774–14781. doi: 10.1039/D3NR01512B. PubMed DOI
Rao M. S., Tiwari A., Sethi D., Dash T., Sankaran K. J., Sakthivel R.. Effect of Various Carbon Supports for TiO2 and N-Doped TiO2 Photocatalysts for Inactivation of Escherichia Coli in Water under UV–Visible Light. J. Photochem. Photobiol., B. 2025;268:113180. doi: 10.1016/j.jphotobiol.2025.113180. PubMed DOI
Lone A. L., Rehman S. U., Haq S., Shahzad N., Al-Sadoon M. K., Shahzad M. I., Razzokov J., Shujaat S., Samad A.. Unveiling the Physicochemical, Photocatalytic, Antibacterial and Antioxidant Properties of MWCNT-Modified Ag2O/CuO/ZnO Nanocomposites. RSC Adv. 2025;15(2):1323–1334. doi: 10.1039/D4RA08466G. PubMed DOI PMC
Kamo A., Ates Sonmezoglu O., Sonmezoglu S.. Ternary Zinc–Tin-Oxide Nanoparticles Modified by Magnesium Ions as a Visible-Light-Active Photocatalyst with Highly Strong Antibacterial Activity. Nanoscale Adv. 2024;6(23):6008–6018. doi: 10.1039/D4NA00811A. PubMed DOI PMC
Jo Y. J., Patil R. P., Song M. S., Chae W.-S., Mahadik M. A., Cho M., Jang J. S.. In2O3-ZnO Nanoporous Photocatalyst Modified with CuOx Cocatalyst for Enhanced Photocatalytic Bacterial Inactivation and Dye Degradation. Appl. Surf. Sci. 2024;669:160416. doi: 10.1016/j.apsusc.2024.160416. DOI
Hofman-Caris C. H. M., Bäuerlein P. S., Siegers W. G., Mintenig S. M., Messina R., Dekker S. C., Bertelkamp Ch., Cornelissen E. R., Van Wezel A. P.. Removal of Nanoparticles (Both Inorganic Nanoparticles and Nanoplastics) in Drinking Water Treatment – Coagulation/Flocculation/Sedimentation, and Sand/Granular Activated Carbon Filtration. Environ. Sci.: Water Res. Technol. 2022;8:1675. doi: 10.1039/D2EW00226D. DOI
Gray, N. F. Filtration Methods. In Microbiology of Waterborne Diseases; Elsevier, 2014; pp 631–650.
Karthikeyan Thirunavukkarasu G., Bacova J., Monfort O., Dworniczek E., Paluch E., Bilal Hanif M., Rauf S., Motlochova M., Capek J., Hensel K., Plesch G., Chodaczek G., Rousar T., Motola M.. Critical Comparison of Aerogel TiO2 and P25 Nanopowders: Cytotoxic Properties, Photocatalytic Activity and Photoinduced Antimicrobial/Antibiofilm Performance. Appl. Surf. Sci. 2022;579:152145. doi: 10.1016/j.apsusc.2021.152145. DOI
Kumar, R. ; Sudhaik, A. ; Raizada, P. ; Thakur, S. . Photocatalytic Inactivation of Harmful Algae and Bacteria in Water. In Advanced Functional Materials and Methods for Photodegradation of Toxic Pollutants; Elsevier, 2024; pp 305–326.
Panchal P., Paul D. R., Sharma A., Hooda D., Yadav R., Meena P., Nehra S. P.. Phytoextract Mediated ZnO/MgO Nanocomposites for Photocatalytic and Antibacterial Activities. J. Photochem. Photobiol., A. 2019;385:112049. doi: 10.1016/j.jphotochem.2019.112049. DOI
Grabowska, E. ; Marchelek, M. ; Paszkiewicz-Gawron, M. ; Zaleska-Medynska, A. . Metal Oxide Photocatalysts. In Metal Oxide-Based Photocatalysis; Elsevier, 2018; pp 51–209.
Thirunavukkarasu G. K., Motlochová M., Bavol D., Vykydalová A., Kupčík J., Navrátil M., Kirakci K., Pližingrová E., Dvoranová D., Šubrt J.. Insights in Photocatalytic/Fenton-Based Degradation of Microplastics Using Iron-Modified Titanium Dioxide Aerogel Powders. Environ. Sci.: Nano. 2025;12(2):1515–1530. doi: 10.1039/D4EN00818A. DOI
Devi P., Singh J. P.. High-Efficiency Photocatalytic Degradation of Polystyrene Microplastics Using In2O3-rGO Nanocomposite Catalysts under Visible Light. J. Polym. Res. 2025;32(5):154. doi: 10.1007/s10965-025-04397-x. DOI
Liu J., Zhao D., Wu X., Wu D., Su N., Wang Y., Chen F., Fu C., Wang J., Zhang Q.. Synergistic Dual-Defect Band Engineering for Highly Efficient Photocatalytic Degradation of Microplastics via Nb-Induced Oxygen Vacancies in SnO2 Quantum Dots. J. Mater. Chem. A. 2025;13(6):4429–4443. doi: 10.1039/D4TA07579J. DOI
Alharthi F. A., Marghany A. E., Abduh N. A. Y., Hasan I.. Synthesis of Platinum Decorated Bismuth Vanadate (Pt-BiVO4) Nanocomposite for Photocatalytic Hydrogen Production. React. Kinet., Mech. Catal. 2024;137(1):423–432. doi: 10.1007/s11144-023-02520-x. DOI
Xia D., Gao H., Li M., Gong F., Li M.. Transition Metal Vanadates Electrodes in Lithium-Ion Batteries: A Holistic Review. Energy Storage Mater. 2021;35:169–191. doi: 10.1016/j.ensm.2020.10.023. DOI
Muthukutty B., Arumugam B., Ramaraj S. K., Selvaraj M., Assiri M. A., Lee D.. Enhancing Metronidazole Photodegradation through the Application of Dysprosium Vanadate/Oxidized Carbon Nanofiber Composite. J. Water Process Eng. 2024;58:104806. doi: 10.1016/j.jwpe.2024.104806. DOI
Sajid M. M., Zhai H., Shad N. A., Shafique M., Afzal A. M., Javed Y., Khan S. B., Ikram M., Amin N., Zhang Z.. Photocatalytic Performance of Ferric Vanadate (FeVO4) Nanoparticles Synthesized by Hydrothermal Method. Mater. Sci. Semicond. Process. 2021;129:105785. doi: 10.1016/j.mssp.2021.105785. DOI
Liang J., Zeng H., Zhang Y., Zhou W., Xiao N.. Higher Efficiency of Vanadate Iron in Heterogeneous Fenton-like Systems to Pretreat Sugarcane Bagasse and Its Enzymatic Saccharification. Biotechnol. Bioeng. 2024;121:2780. doi: 10.1002/bit.28733. PubMed DOI
Zhang M., Fang Y., Tay Y. F., Liu Y., Wang L., Jani H., Abdi F. F., Wong L. H.. Nanostructured Iron Vanadate Photoanodes with Enhanced Visible Absorption and Charge Separation. ACS Appl. Energy Mater. 2022;5(3):3409–3416. doi: 10.1021/acsaem.1c04004. DOI
Zhang M., Ma Y., Friedrich D., Van De Krol R., Wong L. H., Abdi F. F.. Elucidation of the Opto-Electronic and Photoelectrochemical Properties of FeVO4 Photoanodes for Solar Water Oxidation. J. Mater. Chem. A. 2018;6(2):548–555. doi: 10.1039/C7TA08923F. DOI
Khan R., Ali-Löytty H., Saari J., Valden M., Tukiainen A., Lahtonen K., Tkachenko N. V.. Optimization of Photogenerated Charge Carrier Lifetimes in ALD Grown TiO2 for Photonic Applications. Nanomaterials. 2020;10(8):1567. doi: 10.3390/nano10081567. PubMed DOI PMC
Thirunavukkarasu G. K., Monfort O., Motola M., Motlochová M., Gregor M., Roch T., Čaplovicová M., Lavrikova A. Y., Hensel K., Brezová V., Jerigová M., Šubrt J., Plesch G.. Ce Ion Surface-Modified TiO 2 Aerogel Powders: A Comprehensive Study of Their Excellent Photocatalytic Efficiency in Organic Pollutant Removal. New J. Chem. 2021;45(9):4174–4184. doi: 10.1039/D0NJ05976E. DOI
Komárková B., Motlochová M., Slovák V., Ecorchard P., Bezdička P., Bavol D., Šubrt J.. Effect of Amines on (Peroxo)Titanates: Characterization and Thermal Decomposition. J. Therm. Anal. Calorim. 2022;147(8):5009–5022. doi: 10.1007/s10973-021-10925-w. DOI
Pližingrová E., Klementová M., Bezdička P., Boháček J., Barbieriková Z., Dvoranová D., Mazúr M., Krýsa J., Šubrt J., Brezová V.. 2D-Titanium Dioxide Nanosheets Modified with Nd, Ag and Au: Preparation, Characterization and Photocatalytic Activity. Catal. Today. 2017;281:165–180. doi: 10.1016/j.cattod.2016.08.013. DOI
Liapun V., Hanif M. B., Sihor M., Vislocka X., Pandiaraj S., V K U., Thirunavukkarasu G. K., Edelmannová M. F., Reli M., Monfort O., Kočí K., Motola M.. Versatile Application of BiVO4/TiO2 S-Scheme Photocatalyst: Photocatalytic CO2 and Cr(VI) Reduction. Chemosphere. 2023;337:139397. doi: 10.1016/j.chemosphere.2023.139397. PubMed DOI
Zhang C., Chung J. W., Priestley R. D.. Dialysis Nanoprecipitation of Polystyrene Nanoparticles. Macromol. Rapid Commun. 2012;33(20):1798–1803. doi: 10.1002/marc.201200335. PubMed DOI
Thirunavukkarasu G. K., Motlochová M., Bavol D., Vykydalová A., Kupcik J., Navrátil M., Kirakci K., Pližingrová E., Dvoranová D., Subrt J.. Insights in Photocatalytic/Fenton-based Degradation of Microplastics using Iron-Modified Titanium Dioxide Aerogel Powders. Environ. Sci.: Nano. 2025;12:1515. doi: 10.1039/D4EN00818A. DOI
Shi Y., Qin J., Tao Y., Jie G., Wang J.. Natural Weathering Severity of Typical Coastal Environment on Polystyrene: Experiment and Modeling. Polym. Test. 2019;76:138–145. doi: 10.1016/j.polymertesting.2019.03.018. DOI
Gutiérrez D., Hidalgo-Cantabrana C., Rodríguez A., García P., Ruas-Madiedo P.. Monitoring in Real Time the Formation and Removal of Biofilms from Clinical Related Pathogens Using an Impedance-Based Technology. PLoS One. 2016;11(10):e0163966. doi: 10.1371/journal.pone.0163966. PubMed DOI PMC
Žiemytė M., Carda-Diéguez M., Rodríguez-Díaz J. C., Ventero M. P., Mira A., Ferrer M. D.. Real-Time Monitoring of Pseudomonas Aeruginosa Biofilm Growth Dynamics and Persister Cells’ Eradication. Emerging Microbes Infect. 2021;10(1):2062–2075. doi: 10.1080/22221751.2021.1994355. PubMed DOI PMC
Albedwawi S. H., AlJaberi A., Haidemenopoulos G. N., Polychronopoulou K.. High Entropy Oxides-Exploring a Paradigm of Promising Catalysts: A Review. Mater. Des. 2021;202:109534. doi: 10.1016/j.matdes.2021.109534. DOI
Uvarov V., Popov I.. Metrological Characterization of X-Ray Diffraction Methods at Different Acquisition Geometries for Determination of Crystallite Size in Nano-Scale Materials. Mater. Charact. 2013;85:111–123. doi: 10.1016/j.matchar.2013.09.002. DOI
Uvarov V., Popov I.. Metrological Characterization of X-Ray Diffraction Methods for Determination of Crystallite Size in Nano-Scale Materials. Mater. Charact. 2007;58(10):883–891. doi: 10.1016/j.matchar.2006.09.002. DOI
Chung H. Y., Wu X., Amal R., Ng Y. H.. Balancing the Crystallinity and Specific Surface Area of Bismuth Tungstate for Photocatalytic Water Oxidation. Mol. Catal. 2020;487:110887. doi: 10.1016/j.mcat.2020.110887. DOI
Awashra M., Młynarz P.. The Toxicity of Nanoparticles and Their Interaction with Cells: An in Vitro Metabolomic Perspective. Nanoscale Adv. 2023;5(10):2674–2723. doi: 10.1039/D2NA00534D. PubMed DOI PMC
Sohaebuddin S. K., Thevenot P. T., Baker D., Eaton J. W., Tang L.. Nanomaterial Cytotoxicity Is Composition, Size, and Cell Type Dependent. Part. Fibre Toxicol. 2010;7(1):22. doi: 10.1186/1743-8977-7-22. PubMed DOI PMC
Ivanković S., Musić S., Gotić M., Ljubešić N.. Cytotoxicity of Nanosize V2O5 Particles to Selected Fibroblast and Tumor Cells. Toxicol. In Vitro. 2006;20(3):286–294. doi: 10.1016/j.tiv.2005.08.011. PubMed DOI
Kovrlija I., Menshikh K., Abreu H., Cochis A., Rimondini L., Marsan O., Rey C., Combes C., Locs J., Loca D.. Challenging Applicability of ISO 10993–5 for Calcium Phosphate Biomaterials Evaluation: Towards More Accurate in Vitro Cytotoxicity Assessment. Biomater. Adv. 2024;160:213866. doi: 10.1016/j.bioadv.2024.213866. PubMed DOI
ISO . ISO 10993-5:2009. https://www.iso.org/standard/36406.html (accessed July 12, 2024).
Gong H., Wang K., Strich R., Zhou J. G.. In Vitro Biodegradation Behavior, Mechanical Properties, and Cytotoxicity of Biodegradable Zn–Mg Alloy. J. Biomed. Mater. Res. 2015;103(8):1632–1640. doi: 10.1002/jbm.b.33341. PubMed DOI PMC
Yousif E., Haddad R.. Photodegradation and Photostabilization of Polymers, Especially Polystyrene: Review. SpringerPlus. 2013;2(1):398. doi: 10.1186/2193-1801-2-398. PubMed DOI PMC
Vicente J. S., Gejo J. L., Rothenbacher S., Sarojiniamma S., Gogritchiani E., Wörner M., Kasperb G., Braun A. M.. Oxidation of Polystyrene Aerosols by VUV-Photolysis and/or Ozone. Photochem. Photobiol. Sci. 2009;8(7):944–952. doi: 10.1039/b902749a. PubMed DOI
Kemp T. J., McIntyre R. A.. Influence of Transition Metal-Doped Titanium(IV) Dioxide on the Photodegradation of Polystyrene. Polym. Degrad. Stab. 2006;91(12):3010–3019. doi: 10.1016/j.polymdegradstab.2006.08.005. DOI
Dong S., Yan X., Yue Y., Li W., Luo W., Wang Y., Sun J., Li Y., Liu M., Fan M.. H2O2 Concentration Influenced the Photoaging Mechanism and Kinetics of Polystyrene Microplastic under UV Irradiation: Direct and Indirect Photolysis. J. Cleaner Prod. 2022;380:135046. doi: 10.1016/j.jclepro.2022.135046. DOI
Thirunavukkarasu G. K., Gowrisankaran S., Caplovicova M., Satrapinskyy L., Gregor M., Lavrikova A., Gregus J., Halko R., Plesch G., Motola M., Monfort O.. Contribution of Photocatalytic and Fenton-Based Processes in Nanotwin Structured Anodic TiO 2 Nanotube Layers Modified by Ce and V. Dalton Trans. 2022;51(28):10763–10772. doi: 10.1039/D2DT00829G. PubMed DOI
Ceccarini A., Corti A., Erba F., Modugno F., La Nasa J., Bianchi S., Castelvetro V.. The Hidden Microplastics: New Insights and Figures from the Thorough Separation and Characterization of Microplastics and of Their Degradation Byproducts in Coastal Sediments. Environ. Sci. Technol. 2018;52(10):5634–5643. doi: 10.1021/acs.est.8b01487. PubMed DOI
Douglas E. J. A., Wulandari S. W., Lovell S. D., Laabei M.. Novel Antimicrobial Strategies to Treat Multi-drug Resistant Staphylococcus Aureus Infections. Microb. Biotechnol. 2023;16(7):1456–1474. doi: 10.1111/1751-7915.14268. PubMed DOI PMC
Howden B. P., Giulieri S. G., Wong Fok Lung T., Baines S. L., Sharkey L. K., Lee J. Y. H., Hachani A., Monk I. R., Stinear T. P.. Staphylococcus Aureus Host Interactions and Adaptation. Nat. Rev. Microbiol. 2023;21(6):380–395. doi: 10.1038/s41579-023-00852-y. PubMed DOI PMC
Planet P. J.. Life After USA300: The Rise and Fall of a Superbug. J. Infect. Dis. 2017;215(Suppl_1):S71–S77. doi: 10.1093/infdis/jiw444. PubMed DOI PMC