Dynamics of bacterial biofilm development imaged using light sheet fluorescence microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40893774
PubMed Central
PMC12390859
DOI
10.1016/j.bbrep.2025.102127
PII: S2405-5808(25)00214-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Biofilm formation exacerbates bacterial infections and interferes with industrial processes. However, the dynamics of biofilm development, especially if formed by a combination of more than one species, is not entirely understood. Here, we present a microfluidic cultivation system that enables continuous imaging of biofilm growth using light sheet fluorescence microscopy (LSFM). We studied the development of biofilms of the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. Multidirectional LSFM imaging enables the calculation of a three-dimensional reconstruction of the biofilm structure with isotropic resolution. Whereas S. aureus forms 50-70-μm-thick mushroom-like structures, a P. aeruginosa biofilm is 10-15 μm thick with cell clusters 25 μm in diameter. A combined biofilm resulted in the formation of large mushroom-like clusters of S. aureus cells that were subsequently dispersed by invading P. aeruginosa. A higher inoculation ratio favoring P. aeruginosa resulted in the formation of small and stable S. aureus clusters overgrown with P. aeruginosa cells. Applying conditioned media from S. aureus and P. aeruginosa coculture to a single-species S. aureus biofilm induced its dispersion. Integrating a microfluidic system into LSFM enables the visualization of biofilm formation dynamics and the effects of compounds on biofilm development.
Zobrazit více v PubMed
Lebeaux D., Chauhan A., Rendueles O., Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens. Jun 2013;2(2):288–356. doi: 10.3390/pathogens2020288. PubMed DOI PMC
Paharik A.E., Horswill A.R. The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol. Spectr. Apr 2016;4(2) doi: 10.1128/microbiolspec.VMBF-0022-2015. PubMed DOI PMC
Otto M. Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 2008;322:207–228. doi: 10.1007/978-3-540-75418-3_10. PubMed DOI PMC
Limoli D.H., Yang J., Khansaheb M.K., et al. Staphylococcus aureus and Pseudomonas aeruginosa co-infection is associated with cystic fibrosis-related diabetes and poor clinical outcomes. Eur. J. Clin. Microbiol. Jun 2016;35(6):947–953. doi: 10.1007/s10096-016-2621-0. PubMed DOI
Flemming H.C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol. Sep 2010;8(9):623–633. doi: 10.1038/nrmicro2415. PubMed DOI
Lewis K. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol. 2008;322:107–131. doi: 10.1007/978-3-540-75418-3_6. PubMed DOI
Tran N.N., Morrisette T., Jorgensen S.C.J., Orench-Benvenutti J.M., Kebriaei R. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacotherapy. Aug 2023;43(8):816–832. doi: 10.1002/phar.2806. PubMed DOI
Reffuveille F., Josse J., Vallé Q., Monagaret C., Gangloff S.C. 2017. Staphylococcus aureus Biofilms and their Impact on the Medical Field. DOI
Thurlow L.R., Hanke M.L., Fritz T., et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol. Jun 1 2011;186(11):6585–6596. doi: 10.4049/jimmunol.1002794. PubMed DOI PMC
Hoiby N., Bjarnsholt T., Givskov M., Molin S., Ciofu O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents. Apr 2010;35(4):322–332. doi: 10.1016/j.ijantimicag.2009.12.011. PubMed DOI
Kostakioti M., Hadjifrangiskou M., Hultgren S.J. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. Apr 1 2013;3(4) doi: 10.1101/cshperspect.a010306. PubMed DOI PMC
Archer N.K., Mazaitis M.J., Costerton J.W., Leid J.G., Powers M.E., Shirtliff M.E. Staphylococcus aureus biofilms properties, regulation and roles in human disease. Virulence. 2011;2(5):445–459. doi: 10.4161/viru.2.5.17724. Sep-Oct. PubMed DOI PMC
Vuong C., Kidder J.B., Jacobson E.R., Otto M., Proctor R.A., Somerville G.A. Polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J. Bacteriol. May 2005;187(9):2967–2973. doi: 10.1128/Jb.187.9.2967-2973.2005. PubMed DOI PMC
Vuong C., Voyich J.M., Fischer E.R., et al. Polysaccharide intercellular adhesin (PIA) protects against major components of the human innate immune system. Cell. Microbiol. Mar 2004;6(3):269–275. doi: 10.1046/j.1462-5822.2004.00367.x. PubMed DOI
Balducci E., Papi F., Capialbi D.E., Del Bino L. Polysaccharides' structures and functions in biofilm architecture of antimicrobial-resistant (AMR) pathogens. Int. J. Mol. Sci. Feb 17 2023;24(4) doi: 10.3390/ijms24044030. PubMed DOI PMC
O'Toole G.A., Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. Oct 1998;30(2):295–304. doi: 10.1046/j.1365-2958.1998.01062.x. PubMed DOI
Wei Q., Ma L.Y.Z. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int. J. Mol. Sci. Oct 2013;14(10):20983–21005. doi: 10.3390/ijms141020983. PubMed DOI PMC
Thomas V.C., Hancock L.E. Suicide and fratricide in bacterial biofilms. Int. J. Artif. Organs. Sep 2009;32(9):537–544. doi: 10.1177/039139880903200902. PubMed DOI
Campoccia D., Montanaro L., Arciola C.R. Extracellular DNA (eDNA). A major ubiquitous element of the bacterial biofilm architecture. Int. J. Mol. Sci. Aug 23 2021;22(16) doi: 10.3390/ijms22169100. PubMed DOI PMC
Schwartz K., Ganesan M., Payne D.E., Solomon M.J., Boles B.R. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol. Microbiol. Jan 2016;99(1):123–134. doi: 10.1111/mmi.13219. PubMed DOI PMC
Fong J.N.C., Yildiz F.H. Biofilm matrix proteins. Microbiol. Spectr. Apr 2015;3(2) doi: 10.1128/microbiolspec.MB-0004-2014. PubMed DOI PMC
Williams P., Winzer K., Chan W.C., Cámara M. Look who's talking:: communication and quorum sensing in the bacterial world. Philos. Trans. R. Soc. B. Jul 29 2007;362(1483):1119–1134. doi: 10.1098/rstb.2007.2039. PubMed DOI PMC
Schilcher K., Horswill A.R. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol. Mol. Biol. Rev. Aug 19 2020;84(3) doi: 10.1128/MMBR.00026-19. PubMed DOI PMC
Boles B.R., Horswill A.R. Agr-mediated dispersal of staohylococcus aureus biofilms. PLoS Pathog. Apr 2008;4(4) doi: 10.1371/journal.ppat.1000052. PubMed DOI PMC
García-Betancur J.C., Lopez D. Cell heterogeneity in staphylococcal communities. J. Mol. Biol. Nov 22 2019;431(23):4699–4711. doi: 10.1016/j.jmb.2019.06.011. PubMed DOI
Miranda S.W., Asfahl K.L., Dandekar A.A., Greenberg E.P. Pseudomonas aeruginosa quorum sensing. Adv. Exp. Med. Biol. 2022;1386:95–115. doi: 10.1007/978-3-031-08491-1_4. PubMed DOI PMC
Yung D.B.Y., Sircombe K.J., Pletzer D. Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol. Microbiol. Jul 2021;116(1):1–15. doi: 10.1111/mmi.14699. PubMed DOI
Reynaud E.G., Krzic U., Greger K., Stelzer E.H.K. Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage. HFSP J. Oct 2008;2(5):266–275. doi: 10.2976/1.2974980. PubMed DOI PMC
Stelzer E.H.K., Strobl F., Chang B.J., et al. Light sheet fluorescence microscopy. Nat. Rev. Method Prime. Nov 3 2021;1(1) doi: 10.1038/s43586-021-00069-4. ARTN 73. DOI
Santi P.A. Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. Feb 2011;59(2):129–138. doi: 10.1369/0022155410394857. PubMed DOI PMC
Salgar-Chaparro S.J., Lepkova K., Pojtanabuntoeng T., Darwin A., Machuca L.L. Nutrient level determines biofilm characteristics and subsequent impact on microbial corrosion and biocide effectiveness. Appl. Environ. Microbiol. Mar 18 2020;86(7) doi: 10.1128/AEM.02885-19. PubMed DOI PMC
Schlafer S., Meyer R.L. Confocal microscopy imaging of the biofilm matrix. J. Microbiol. Methods. Jul 2017;138:50–59. doi: 10.1016/j.mimet.2016.03.002. PubMed DOI
Lazzari G., Vinciguerra D., Balasso A., et al. Light sheet fluorescence microscopy versus confocal microscopy: in quest of a suitable tool to assess drug and nanomedicine penetration into multicellular tumor spheroids. Eur. J. Pharm. Biopharm. Sep 2019;142:195–203. doi: 10.1016/j.ejpb.2019.06.019. PubMed DOI
Hörl D., Rusak F.R., Preusser F., et al. BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nat. Methods. Sep 2019;16(9):870. doi: 10.1038/s41592-019-0501-0. PubMed DOI
Preibisch S., Saalfeld S., Schindelin J., Tomancak P. Software for bead-based registration of selective plane illumination microscopy data. Nat. Methods. Jun 2010;7(6):418–419. doi: 10.1038/nmeth0610-418. PubMed DOI
Balleza E., Kim J.M., Cluzel P. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods. Jan 2018;15(1):47–51. doi: 10.1038/nmeth.4509. PubMed DOI PMC
George S.E., Nguyen T., Geiger T., et al. Phenotypic heterogeneity and temporal expression of the capsular polysaccharide in Staphylococcus aureus. Mol. Microbiol. Dec 2015;98(6):1073–1088. doi: 10.1111/mmi.13174. PubMed DOI
Wilkinson B.J., Holmes K.M. Staphylococcus-aureus cell-surface - capsule as a barrier to bacteriophage adsorption. Infect. Immun. 1979;23(2):549–552. doi: 10.1128/Iai.23.2.549-552.1979. PubMed DOI PMC
Das T., Sharma P.K., Busscher H.J., van der Mei H.C., Krom B.P. Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl. Environ. Microbiol. May 2010;76(10):3405–3408. doi: 10.1128/Aem.03119-09. PubMed DOI PMC
Rumbaugh K.P., Sauer K. Biofilm dispersion. Nat. Rev. Microbiol. Oct 2020;18(10):571–586. doi: 10.1038/s41579-020-0385-0. PubMed DOI PMC
Thomas V.C., Hancock L.E. Suicide and fratricide in bacterial biofilms. Int. J. Artif. Organs. Sep 2009;32(9):537–544. doi: 10.1177/039139880903200902. PubMed DOI
Lister J.L., Horswill A.R. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 2014;4:178. doi: 10.3389/fcimb.2014.00178. PubMed DOI PMC
Rani S.A., Pitts B., Beyenal H., et al. Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J. Bacteriol. Jun 2007;189(11):4223–4233. doi: 10.1128/Jb.00107-07. PubMed DOI PMC
Nguyen H.T.T., Nguyen T.H., Otto M. The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput. Struct. Biotec. 2020;18:3324–3334. doi: 10.1016/j.csbj.2020.10.027. PubMed DOI PMC
Calles B., Goni-Moreno A., de Lorenzo V. Digitalizing heterologous gene expression in Gram-negative bacteria with a portable ON/OFF module. Mol. Syst. Biol. Dec 2019;15(12) doi: 10.15252/msb.20188777. PubMed DOI PMC
Gawin A., Valla S., Brautaset T. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering. Microb. Biotechnol. Jul 2017;10(4):702–718. doi: 10.1111/1751-7915.12701. PubMed DOI PMC
Yang L., Barken K.B., Skindersoe M.E., Christensen A.B., Givskov M., Tolker-Nielsen T. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology (Read.) May 2007;153(Pt 5):1318–1328. doi: 10.1099/mic.0.2006/004911-0. PubMed DOI
Turnbull L., Toyofuku M., Hynen A.L., et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat. Commun. Apr 14 2016;7 doi: 10.1038/ncomms11220. PubMed DOI PMC
Shrout J.D., Chopp D.L., Just C.L., Hentzer M., Givskov M., Parsek M.R. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. Dec 2006;62(5):1264–1277. doi: 10.1111/j.1365-2958.2006.05421.x. PubMed DOI
DeLeon S., Clinton A., Fowler H., Everett J., Horswill A.R., Rumbaugh K.P. Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model. Infect. Immun. Nov 2014;82(11):4718–4728. doi: 10.1128/IAI.02198-14. PubMed DOI PMC
Filkins L.M., O'Toole G.A. Cystic fibrosis lung infections: polymicrobial, complex, and hard to treat. PLoS Pathog. Dec 2015;11(12) doi: 10.1371/journal.ppat.1005258. PubMed DOI PMC
Algburi A., Comito N., Kashtanov D., Dicks L.M.T., Chikindas M.L. Control of biofilm formation: antibiotics and beyond. Appl. Environ. Microbiol. Feb 1 2017;83(3) doi: 10.1128/AEM.02508-16. PubMed DOI PMC
Proctor R.A., Kriegeskorte A., Kahl B.C., Becker K., Löffler B., Peters G. Small colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front. Cell. Infect. Microbiol. Jul 2014 doi: 10.3389/fcimb.2014.00099. PubMed DOI PMC
Biswas L., Gotz F. Molecular mechanisms of staphylococcus and pseudomonas interactions in cystic fibrosis. Front. Cell. Infect. Microbiol. 2021;11 doi: 10.3389/fcimb.2021.824042. PubMed DOI PMC
Filkins L.M., Graber J.A., Olson D.G., et al. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S.aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J. Bacteriol. Jul 2015;197(14):2252–2264. doi: 10.1128/Jb.00059-15. PubMed DOI PMC
Sotirova A.V., Spasova D.I., Galabova D.N., Karpenko E., Shulga A. Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Curr. Microbiol. Jun 2008;56(6):639–644. doi: 10.1007/s00284-008-9139-3. PubMed DOI
Hotterbeekx A., Kumar-Singh S., Goossens H., Malhotra-Kumar S. In vivo and in vitro interactions between Pseudomonas aeruginosa and staphylococcus spp. Front. Cell. Infect. Microbiol. 2017;7:106. doi: 10.3389/fcimb.2017.00106. PubMed DOI PMC
Thi M.T.T., Wibowo D., Rehm B.H.A. Pseudomonas aeruginosa biofilms. Int. J. Mol. Sci. Nov 17 2020;21(22) doi: 10.3390/ijms21228671. PubMed DOI PMC
Zhao K.L., Du L.M., Lin J.F., et al. Quorum-sensing and type VI secretion system can direct interspecific coexistence during evolution. Front. Microbiol. Oct 11 2018:9. doi: 10.3389/fmicb.2018.02287. PubMed DOI PMC
Cooper D.G., Goldenberg B.G. Surface-active agents from two bacillus species. Appl. Environ. Microbiol. Feb 1987;53(2):224–229. doi: 10.1128/aem.53.2.224-229.1987. PubMed DOI PMC
Charpentier E., Anton A.I., Barry P., Alfonso B., Fang Y., Novick R.P. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl. Environ. Microbiol. Oct 2004;70(10):6076–6085. doi: 10.1128/AEM.70.10.6076-6085.2004. PubMed DOI PMC
Sullam P.M., Bayer A.S., Foss W.M., Cheung A.L. Diminished platelet binding in vitro by Staphylococcus aureus is associated with reduced virulence in a rabbit model of infective endocarditis. Infect. Immun. Dec 1996;64(12):4915–4921. doi: 10.1128/iai.64.12.4915-4921.1996. PubMed DOI PMC
Pettersen E.F., Goddard T.D., Huang C.C., et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. Jan 2021;30(1):70–82. doi: 10.1002/pro.3943. PubMed DOI PMC