Dynamics of bacterial biofilm development imaged using light sheet fluorescence microscopy

. 2025 Sep ; 43 () : 102127. [epub] 20250816

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40893774
Odkazy

PubMed 40893774
PubMed Central PMC12390859
DOI 10.1016/j.bbrep.2025.102127
PII: S2405-5808(25)00214-6
Knihovny.cz E-zdroje

Biofilm formation exacerbates bacterial infections and interferes with industrial processes. However, the dynamics of biofilm development, especially if formed by a combination of more than one species, is not entirely understood. Here, we present a microfluidic cultivation system that enables continuous imaging of biofilm growth using light sheet fluorescence microscopy (LSFM). We studied the development of biofilms of the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. Multidirectional LSFM imaging enables the calculation of a three-dimensional reconstruction of the biofilm structure with isotropic resolution. Whereas S. aureus forms 50-70-μm-thick mushroom-like structures, a P. aeruginosa biofilm is 10-15 μm thick with cell clusters 25 μm in diameter. A combined biofilm resulted in the formation of large mushroom-like clusters of S. aureus cells that were subsequently dispersed by invading P. aeruginosa. A higher inoculation ratio favoring P. aeruginosa resulted in the formation of small and stable S. aureus clusters overgrown with P. aeruginosa cells. Applying conditioned media from S. aureus and P. aeruginosa coculture to a single-species S. aureus biofilm induced its dispersion. Integrating a microfluidic system into LSFM enables the visualization of biofilm formation dynamics and the effects of compounds on biofilm development.

Zobrazit více v PubMed

Lebeaux D., Chauhan A., Rendueles O., Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens. Jun 2013;2(2):288–356. doi: 10.3390/pathogens2020288. PubMed DOI PMC

Paharik A.E., Horswill A.R. The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol. Spectr. Apr 2016;4(2) doi: 10.1128/microbiolspec.VMBF-0022-2015. PubMed DOI PMC

Otto M. Staphylococcal biofilms. Curr. Top. Microbiol. Immunol. 2008;322:207–228. doi: 10.1007/978-3-540-75418-3_10. PubMed DOI PMC

Limoli D.H., Yang J., Khansaheb M.K., et al. Staphylococcus aureus and Pseudomonas aeruginosa co-infection is associated with cystic fibrosis-related diabetes and poor clinical outcomes. Eur. J. Clin. Microbiol. Jun 2016;35(6):947–953. doi: 10.1007/s10096-016-2621-0. PubMed DOI

Flemming H.C., Wingender J. The biofilm matrix. Nat. Rev. Microbiol. Sep 2010;8(9):623–633. doi: 10.1038/nrmicro2415. PubMed DOI

Lewis K. Multidrug tolerance of biofilms and persister cells. Curr. Top. Microbiol. Immunol. 2008;322:107–131. doi: 10.1007/978-3-540-75418-3_6. PubMed DOI

Tran N.N., Morrisette T., Jorgensen S.C.J., Orench-Benvenutti J.M., Kebriaei R. Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacotherapy. Aug 2023;43(8):816–832. doi: 10.1002/phar.2806. PubMed DOI

Reffuveille F., Josse J., Vallé Q., Monagaret C., Gangloff S.C. 2017. Staphylococcus aureus Biofilms and their Impact on the Medical Field. DOI

Thurlow L.R., Hanke M.L., Fritz T., et al. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol. Jun 1 2011;186(11):6585–6596. doi: 10.4049/jimmunol.1002794. PubMed DOI PMC

Hoiby N., Bjarnsholt T., Givskov M., Molin S., Ciofu O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents. Apr 2010;35(4):322–332. doi: 10.1016/j.ijantimicag.2009.12.011. PubMed DOI

Kostakioti M., Hadjifrangiskou M., Hultgren S.J. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb. Perspect. Med. Apr 1 2013;3(4) doi: 10.1101/cshperspect.a010306. PubMed DOI PMC

Archer N.K., Mazaitis M.J., Costerton J.W., Leid J.G., Powers M.E., Shirtliff M.E. Staphylococcus aureus biofilms properties, regulation and roles in human disease. Virulence. 2011;2(5):445–459. doi: 10.4161/viru.2.5.17724. Sep-Oct. PubMed DOI PMC

Vuong C., Kidder J.B., Jacobson E.R., Otto M., Proctor R.A., Somerville G.A. Polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J. Bacteriol. May 2005;187(9):2967–2973. doi: 10.1128/Jb.187.9.2967-2973.2005. PubMed DOI PMC

Vuong C., Voyich J.M., Fischer E.R., et al. Polysaccharide intercellular adhesin (PIA) protects against major components of the human innate immune system. Cell. Microbiol. Mar 2004;6(3):269–275. doi: 10.1046/j.1462-5822.2004.00367.x. PubMed DOI

Balducci E., Papi F., Capialbi D.E., Del Bino L. Polysaccharides' structures and functions in biofilm architecture of antimicrobial-resistant (AMR) pathogens. Int. J. Mol. Sci. Feb 17 2023;24(4) doi: 10.3390/ijms24044030. PubMed DOI PMC

O'Toole G.A., Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. Oct 1998;30(2):295–304. doi: 10.1046/j.1365-2958.1998.01062.x. PubMed DOI

Wei Q., Ma L.Y.Z. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int. J. Mol. Sci. Oct 2013;14(10):20983–21005. doi: 10.3390/ijms141020983. PubMed DOI PMC

Thomas V.C., Hancock L.E. Suicide and fratricide in bacterial biofilms. Int. J. Artif. Organs. Sep 2009;32(9):537–544. doi: 10.1177/039139880903200902. PubMed DOI

Campoccia D., Montanaro L., Arciola C.R. Extracellular DNA (eDNA). A major ubiquitous element of the bacterial biofilm architecture. Int. J. Mol. Sci. Aug 23 2021;22(16) doi: 10.3390/ijms22169100. PubMed DOI PMC

Schwartz K., Ganesan M., Payne D.E., Solomon M.J., Boles B.R. Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol. Microbiol. Jan 2016;99(1):123–134. doi: 10.1111/mmi.13219. PubMed DOI PMC

Fong J.N.C., Yildiz F.H. Biofilm matrix proteins. Microbiol. Spectr. Apr 2015;3(2) doi: 10.1128/microbiolspec.MB-0004-2014. PubMed DOI PMC

Williams P., Winzer K., Chan W.C., Cámara M. Look who's talking:: communication and quorum sensing in the bacterial world. Philos. Trans. R. Soc. B. Jul 29 2007;362(1483):1119–1134. doi: 10.1098/rstb.2007.2039. PubMed DOI PMC

Schilcher K., Horswill A.R. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol. Mol. Biol. Rev. Aug 19 2020;84(3) doi: 10.1128/MMBR.00026-19. PubMed DOI PMC

Boles B.R., Horswill A.R. Agr-mediated dispersal of staohylococcus aureus biofilms. PLoS Pathog. Apr 2008;4(4) doi: 10.1371/journal.ppat.1000052. PubMed DOI PMC

García-Betancur J.C., Lopez D. Cell heterogeneity in staphylococcal communities. J. Mol. Biol. Nov 22 2019;431(23):4699–4711. doi: 10.1016/j.jmb.2019.06.011. PubMed DOI

Miranda S.W., Asfahl K.L., Dandekar A.A., Greenberg E.P. Pseudomonas aeruginosa quorum sensing. Adv. Exp. Med. Biol. 2022;1386:95–115. doi: 10.1007/978-3-031-08491-1_4. PubMed DOI PMC

Yung D.B.Y., Sircombe K.J., Pletzer D. Friends or enemies? The complicated relationship between Pseudomonas aeruginosa and Staphylococcus aureus. Mol. Microbiol. Jul 2021;116(1):1–15. doi: 10.1111/mmi.14699. PubMed DOI

Reynaud E.G., Krzic U., Greger K., Stelzer E.H.K. Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage. HFSP J. Oct 2008;2(5):266–275. doi: 10.2976/1.2974980. PubMed DOI PMC

Stelzer E.H.K., Strobl F., Chang B.J., et al. Light sheet fluorescence microscopy. Nat. Rev. Method Prime. Nov 3 2021;1(1) doi: 10.1038/s43586-021-00069-4. ARTN 73. DOI

Santi P.A. Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. Feb 2011;59(2):129–138. doi: 10.1369/0022155410394857. PubMed DOI PMC

Salgar-Chaparro S.J., Lepkova K., Pojtanabuntoeng T., Darwin A., Machuca L.L. Nutrient level determines biofilm characteristics and subsequent impact on microbial corrosion and biocide effectiveness. Appl. Environ. Microbiol. Mar 18 2020;86(7) doi: 10.1128/AEM.02885-19. PubMed DOI PMC

Schlafer S., Meyer R.L. Confocal microscopy imaging of the biofilm matrix. J. Microbiol. Methods. Jul 2017;138:50–59. doi: 10.1016/j.mimet.2016.03.002. PubMed DOI

Lazzari G., Vinciguerra D., Balasso A., et al. Light sheet fluorescence microscopy versus confocal microscopy: in quest of a suitable tool to assess drug and nanomedicine penetration into multicellular tumor spheroids. Eur. J. Pharm. Biopharm. Sep 2019;142:195–203. doi: 10.1016/j.ejpb.2019.06.019. PubMed DOI

Hörl D., Rusak F.R., Preusser F., et al. BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nat. Methods. Sep 2019;16(9):870. doi: 10.1038/s41592-019-0501-0. PubMed DOI

Preibisch S., Saalfeld S., Schindelin J., Tomancak P. Software for bead-based registration of selective plane illumination microscopy data. Nat. Methods. Jun 2010;7(6):418–419. doi: 10.1038/nmeth0610-418. PubMed DOI

Balleza E., Kim J.M., Cluzel P. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods. Jan 2018;15(1):47–51. doi: 10.1038/nmeth.4509. PubMed DOI PMC

George S.E., Nguyen T., Geiger T., et al. Phenotypic heterogeneity and temporal expression of the capsular polysaccharide in Staphylococcus aureus. Mol. Microbiol. Dec 2015;98(6):1073–1088. doi: 10.1111/mmi.13174. PubMed DOI

Wilkinson B.J., Holmes K.M. Staphylococcus-aureus cell-surface - capsule as a barrier to bacteriophage adsorption. Infect. Immun. 1979;23(2):549–552. doi: 10.1128/Iai.23.2.549-552.1979. PubMed DOI PMC

Das T., Sharma P.K., Busscher H.J., van der Mei H.C., Krom B.P. Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl. Environ. Microbiol. May 2010;76(10):3405–3408. doi: 10.1128/Aem.03119-09. PubMed DOI PMC

Rumbaugh K.P., Sauer K. Biofilm dispersion. Nat. Rev. Microbiol. Oct 2020;18(10):571–586. doi: 10.1038/s41579-020-0385-0. PubMed DOI PMC

Thomas V.C., Hancock L.E. Suicide and fratricide in bacterial biofilms. Int. J. Artif. Organs. Sep 2009;32(9):537–544. doi: 10.1177/039139880903200902. PubMed DOI

Lister J.L., Horswill A.R. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 2014;4:178. doi: 10.3389/fcimb.2014.00178. PubMed DOI PMC

Rani S.A., Pitts B., Beyenal H., et al. Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J. Bacteriol. Jun 2007;189(11):4223–4233. doi: 10.1128/Jb.00107-07. PubMed DOI PMC

Nguyen H.T.T., Nguyen T.H., Otto M. The staphylococcal exopolysaccharide PIA - Biosynthesis and role in biofilm formation, colonization, and infection. Comput. Struct. Biotec. 2020;18:3324–3334. doi: 10.1016/j.csbj.2020.10.027. PubMed DOI PMC

Calles B., Goni-Moreno A., de Lorenzo V. Digitalizing heterologous gene expression in Gram-negative bacteria with a portable ON/OFF module. Mol. Syst. Biol. Dec 2019;15(12) doi: 10.15252/msb.20188777. PubMed DOI PMC

Gawin A., Valla S., Brautaset T. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering. Microb. Biotechnol. Jul 2017;10(4):702–718. doi: 10.1111/1751-7915.12701. PubMed DOI PMC

Yang L., Barken K.B., Skindersoe M.E., Christensen A.B., Givskov M., Tolker-Nielsen T. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology (Read.) May 2007;153(Pt 5):1318–1328. doi: 10.1099/mic.0.2006/004911-0. PubMed DOI

Turnbull L., Toyofuku M., Hynen A.L., et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat. Commun. Apr 14 2016;7 doi: 10.1038/ncomms11220. PubMed DOI PMC

Shrout J.D., Chopp D.L., Just C.L., Hentzer M., Givskov M., Parsek M.R. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. Dec 2006;62(5):1264–1277. doi: 10.1111/j.1365-2958.2006.05421.x. PubMed DOI

DeLeon S., Clinton A., Fowler H., Everett J., Horswill A.R., Rumbaugh K.P. Synergistic interactions of Pseudomonas aeruginosa and Staphylococcus aureus in an in vitro wound model. Infect. Immun. Nov 2014;82(11):4718–4728. doi: 10.1128/IAI.02198-14. PubMed DOI PMC

Filkins L.M., O'Toole G.A. Cystic fibrosis lung infections: polymicrobial, complex, and hard to treat. PLoS Pathog. Dec 2015;11(12) doi: 10.1371/journal.ppat.1005258. PubMed DOI PMC

Algburi A., Comito N., Kashtanov D., Dicks L.M.T., Chikindas M.L. Control of biofilm formation: antibiotics and beyond. Appl. Environ. Microbiol. Feb 1 2017;83(3) doi: 10.1128/AEM.02508-16. PubMed DOI PMC

Proctor R.A., Kriegeskorte A., Kahl B.C., Becker K., Löffler B., Peters G. Small colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front. Cell. Infect. Microbiol. Jul 2014 doi: 10.3389/fcimb.2014.00099. PubMed DOI PMC

Biswas L., Gotz F. Molecular mechanisms of staphylococcus and pseudomonas interactions in cystic fibrosis. Front. Cell. Infect. Microbiol. 2021;11 doi: 10.3389/fcimb.2021.824042. PubMed DOI PMC

Filkins L.M., Graber J.A., Olson D.G., et al. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S.aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J. Bacteriol. Jul 2015;197(14):2252–2264. doi: 10.1128/Jb.00059-15. PubMed DOI PMC

Sotirova A.V., Spasova D.I., Galabova D.N., Karpenko E., Shulga A. Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Curr. Microbiol. Jun 2008;56(6):639–644. doi: 10.1007/s00284-008-9139-3. PubMed DOI

Hotterbeekx A., Kumar-Singh S., Goossens H., Malhotra-Kumar S. In vivo and in vitro interactions between Pseudomonas aeruginosa and staphylococcus spp. Front. Cell. Infect. Microbiol. 2017;7:106. doi: 10.3389/fcimb.2017.00106. PubMed DOI PMC

Thi M.T.T., Wibowo D., Rehm B.H.A. Pseudomonas aeruginosa biofilms. Int. J. Mol. Sci. Nov 17 2020;21(22) doi: 10.3390/ijms21228671. PubMed DOI PMC

Zhao K.L., Du L.M., Lin J.F., et al. Quorum-sensing and type VI secretion system can direct interspecific coexistence during evolution. Front. Microbiol. Oct 11 2018:9. doi: 10.3389/fmicb.2018.02287. PubMed DOI PMC

Cooper D.G., Goldenberg B.G. Surface-active agents from two bacillus species. Appl. Environ. Microbiol. Feb 1987;53(2):224–229. doi: 10.1128/aem.53.2.224-229.1987. PubMed DOI PMC

Charpentier E., Anton A.I., Barry P., Alfonso B., Fang Y., Novick R.P. Novel cassette-based shuttle vector system for gram-positive bacteria. Appl. Environ. Microbiol. Oct 2004;70(10):6076–6085. doi: 10.1128/AEM.70.10.6076-6085.2004. PubMed DOI PMC

Sullam P.M., Bayer A.S., Foss W.M., Cheung A.L. Diminished platelet binding in vitro by Staphylococcus aureus is associated with reduced virulence in a rabbit model of infective endocarditis. Infect. Immun. Dec 1996;64(12):4915–4921. doi: 10.1128/iai.64.12.4915-4921.1996. PubMed DOI PMC

Pettersen E.F., Goddard T.D., Huang C.C., et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. Jan 2021;30(1):70–82. doi: 10.1002/pro.3943. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...