Genetically determined body mass index is associated with diffuse large B-cell lymphoma in polygenic and Mendelian randomization analyses

. 2026 Jan 01 ; 158 (1) : 45-59. [epub] 20250905

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40910475

Grantová podpora
HHSN268201100001I NHLBI NIH HHS - United States
HHSN268201100046C NHLBI NIH HHS - United States
U58 DP000807 NCCDPHP CDC HHS - United States
HHSN261201000034C NCI NIH HHS - United States
R01 CA134674 NCI NIH HHS - United States
HHSN268201100001C WHI NIH HHS - United States
P30 CA016087 NCI NIH HHS - United States
HHSN261201000140C NCI NIH HHS - United States
R01 CA098122 NCI NIH HHS - United States
U01 HG007033 NHGRI NIH HHS - United States
P01 CA087969 NCI NIH HHS - United States
HHSN261201000035C NCI NIH HHS - United States
R01 CA134958 NCI NIH HHS - United States
R21 CA165923 NCI NIH HHS - United States
HHSN268201100004I NHLBI NIH HHS - United States
P30 CA086862 NCI NIH HHS - United States
U01 CA167552 NCI NIH HHS - United States
HHSN268201100003C WHI NIH HHS - United States
R01 CA148690 NCI NIH HHS - United States
HHSN261201800016C NCI NIH HHS - United States
P30 ES000260 NIEHS NIH HHS - United States
R01 CA154643 NCI NIH HHS - United States
R01 CA062006 NCI NIH HHS - United States
K08 CA134919 NCI NIH HHS - United States
UL1 TR000135 NCATS NIH HHS - United States
HHSN271201100004C NIA NIH HHS - United States
R01 CA098661 NCI NIH HHS - United States
HHSN261201800016I NCI NIH HHS - United States
UM1 CA186107 NCI NIH HHS - United States
HHSN268201100002C WHI NIH HHS - United States
P30 CA015083 NCI NIH HHS - United States
R01 CA092153 NCI NIH HHS - United States
HHSN261201000035I NCI NIH HHS - United States
P50 CA097274 NCI NIH HHS - United States
HHSN268201100003I NHLBI NIH HHS - United States
R01 CA049449 NCI NIH HHS - United States
HHSN268201100002I NHLBI NIH HHS - United States
R01 CA149445 NCI NIH HHS - United States
U01 CA257679 NCI NIH HHS - United States
HHSN268201100004C WHI NIH HHS - United States
U01 CA118444 NCI NIH HHS - United States
P30 CA042014 NCI NIH HHS - United States

Obesity has been associated with non-Hodgkin lymphoma (NHL), but the evidence is inconclusive. We examined the association between genetically determined adiposity and four common NHL subtypes: diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukemia, and marginal zone lymphoma, using eight genome-wide association studies of European ancestry (N = 10,629 cases, 9505 controls) and constructing polygenic scores for body mass index (BMI), waist-to-hip ratio (WHR), and waist-to-hip ratio adjusted for BMI (WHRadjBMI). Higher genetically determined BMI was associated with an increased risk of DLBCL [odds ratio (OR) per standard deviation (SD) = 1.18, 95% confidence interval (95% CI): 1.05-1.33, p = .005]. This finding was consistent with Mendelian randomization analyses, which demonstrated a similar increased risk of DLBCL with higher genetically determined BMI (ORper SD = 1.12, 95% CI: 1.02-1.23, p = .03). No significant associations were observed with other NHL subtypes. Our study demonstrates a positive link between a genetically determined BMI and an increased risk of DLBCL, providing additional support for increased adiposity as a risk factor for DLBCL.

Bill Lyons Informatics Centre UCL Cancer Institute University College London London UK

Cancer Control Research BC Cancer Vancouver British Columbia Canada

Cancer Epidemiology and Prevention Research Unit School of Public Health Imperial College London London UK

Cancer Epidemiology Division Cancer Council Victoria Melbourne Victoria Australia

Cancer Epidemiology Research Programme Catalan Institute of Oncology IDIBELL Barcelona Spain

Cancer Epidemiology Unit University of Oxford Oxford UK

Cancer Research Center of Lyon INSERM U1052 Centre Léon Bérard Lyon France

Carolina Center for Genome Sciences University of North Carolina at Chapel Hill Chapel Hill North Carolina USA

Center for Chronic Immunodeficiency Institute for Immunodeficiency University Medical Center Freiburg Freiburg Baden Württemberg Germany

Center for Gerontology and Healthcare Research Brown University School of Public Health Providence Rhode Island USA

Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health University of Melbourne Melbourne Victoria Australia

Channing Division of Network Medicine Department of Medicine Brigham and Women's Hospital and Harvard Medical School Boston Massachusetts USA

CIRI Centre International de Recherche en Infectiologie Team Lymphoma Immuno Biology Univ Lyon Inserm U1111 Université Claude Bernard Lyon 1 CNRS UMR5308 ENS de Lyon Lyon France

Concord Clinical School University of Sydney Concord New South Wales Australia

Danish Cancer Institute Danish Cancer Society Copenhagen Denmark

Danish Cancer Society Research Center Danish Cancer Society Copenhagen Denmark

Department of Biomedical Physiology and Kinesiology Simon Fraser University Burnaby British Columbia Canada

Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic

Department of Clinical Medicine University of Copenhagen Copenhagen Denmark

Department of Clinical Pathology Melbourne Medical School The University of Melbourne Melbourne Victoria Australia

Department of Computational Biology St Jude Children's Research Hospital Memphis Tennessee USA

Department of Environmental Medicine New York University School of Medicine New York New York USA

Department of Epidemiology and Biostatistics University of California San Francisco San Francisco California USA

Department of Epidemiology Brown University Providence Rhode Island USA

Department of Epidemiology Harvard T H Chan School of Public Health Boston Massachusetts USA

Department of Epidemiology Research Division of Health Surveillance and Research Statens Serum Institut Copenhagen Denmark

Department of Epidemiology University of North Carolina at Chapel Hill Chapel Hill North Carolina USA

Department of Family Medicine and Public Health Sciences Wayne State University Detroit Michigan USA

Department of Genetics Stanford University Medical School Stanford California USA

Department of Haematology Rigshospitalet Copenhagen Denmark

Department of Health Sciences University of York York UK

Department of Health Services Policy and Practice Brown University School of Public Health Providence Rhode Island USA

Department of Hematology Hospices Civils de Lyon Lyon Sud Hospital Pierre Benite France

Department of Immunology Genetics and Pathology Uppsala University Uppsala Sweden

Department of Internal Medicine and Huntsman Cancer Institute University of Utah School of Medicine Salt Lake City Utah USA

Department of Internal Medicine Carver College of Medicine The University of Iowa Iowa City Iowa USA

Department of Internal Medicine Mayo Clinic Rochester Minnesota USA

Department of Medical and Surgical Sciences University of Bologna Bologna Italy

Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden

Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA

Department of Medicine Solna Karolinska Institutet Stockholm Sweden

Department of Obstetrics and Gynecology New York University School of Medicine New York New York USA

Department of Pathology APHP Necker and Robert Debré Université Paris Cité Institut Imagine INSERM U1163 Paris France

Department of Population Health Sciences Institute for Risk Assessment Sciences Utrecht University Utrecht The Netherlands

Department of Population Science American Cancer Society Atlanta Georgia USA

Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda Maryland USA

Division of Cancer Epidemiology German Cancer Research Center Heidelberg Baden Württemberg Germany

Division of Health Analytics City of Hope Beckman Research Institute Duarte California USA

Division of Hematology Oncology Department of Medicine University of California Irvine Orange California USA

Division of Public Health Sciences Fred Hutchinson Cancer Research Center Seattle Washington DC USA

Environmental and Occupational Epidemiology Unit Cancer Prevention and Research Institute Florence Italy

Genome Sciences Centre BC Cancer Vancouver British Columbia Canada

Genomic Epidemiology Branch International Agency for Research on Cancer Lyon France

Genomic Epidemiology Group German Cancer Research Center Heidelberg Germany

Hematology Center Karolinska University Hospital Stockholm Sweden

INSERM U1231 EA 4184 Registre des Hémopathies Malignes de Côte d'Or University of Burgundy and Dijon University Hospital Dijon France

Institute of Health and Society Clinical Effectiveness Research Group University of Oslo Oslo Norway

Julius Center for Health Sciences and Primary Care University Medical Center Utrecht Utrecht The Netherlands

Laboratory of Translational Genomics Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda Maryland USA

Medicine and Health Sciences Department Jebsen Center for Genetic Epidemiology NTNU Trondheim Norway

National Registry of Childhood Cancers APHP CHU Paul Brousse Villejuif and CHU de Nancy France

Perlmutter Cancer Center NYU Langone Medical Center New York New York USA

Precision Medicine School of Clinical Sciences at Monash Health Monash University Clayton Victoria Australia

Quantitative Health Sciences Mayo Clinic Rochester Minnesota USA

Regional Laboratory for Cancer Prevention Institute for Cancer Research Prevention and Oncological Network Florence Italy

Registre des hémopathies malignes de la Gironde Institut Bergonié Bordeaux Cedex France

School of Nursing Psychotherapy and Community Health Dublin City University Dublin Ireland

School of Population and Public Health University of British Columbia Vancouver British Columbia Canada

Stony Brook Cancer Center Stony Brook University Stony Brook New York USA

Surveillance and Evaluation Research Program The Kirby Institute University of New South Wales Sydney New South Wales Australia

Unidad de Infecciones y Cáncer CIBER de Epidemiología y Salud Pública Barcelona Spain

Unit of Medical Statistics and Epidemiology Department Translational Medicine University of Eastern Piedmont Amedeo Avogadro Novara Italy

Unit of Mixed Research INSERM Université Paris Cité Paris France

Zobrazit více v PubMed

Chang ET, Hjalgrim H, Smedby KE, et al. Body mass index and risk of malignant lymphoma in Scandinavian men and women. J Natl Cancer Inst. 2005;97(3):210‐218. doi: 10.1093/jnci/dji012 PubMed DOI

Britton JA, Khan AE, Rohrmann S, et al. Anthropometric characteristics and non‐Hodgkin's lymphoma and multiple myeloma risk in the European prospective investigation into cancer and nutrition (EPIC). Haematologica. 2008;93(11):1666‐1677. doi: 10.3324/haematol.13078 PubMed DOI

Willett EV, Morton LM, Hartge P, et al. Non‐Hodgkin lymphoma and obesity: a pooled analysis from the InterLymph consortium. Int J Cancer. 2008;122(9):2062‐2070. doi: 10.1002/ijc.23344 PubMed DOI PMC

Murphy F, Kroll ME, Pirie K, Reeves G, Green J, Beral V. Body size in relation to incidence of subtypes of haematological malignancy in the prospective million women study. Br J Cancer. 2013;108(11):2390‐2398. doi: 10.1038/bjc.2013.159 PubMed DOI PMC

Larsson SC, Wolk A. Obesity and risk of non‐Hodgkin's lymphoma: a meta‐analysis. Int J Cancer. 2007;121(7):1564‐1570. doi: 10.1002/ijc.22762 PubMed DOI

Larsson SC, Wolk A. Body mass index and risk of non‐Hodgkin's and Hodgkin's lymphoma: a meta‐analysis of prospective studies. Eur J Cancer. 2011;47(16):2422‐2430. doi: 10.1016/j.ejca.2011.06.029 PubMed DOI

Patel AV, Diver WR, Teras LR, Birmann BM, Gapstur SM. Body mass index, height and risk of lymphoid neoplasms in a large United States cohort. Leuk Lymphoma. 2013;54(6):1221‐1227. doi: 10.3109/10428194.2012.742523 PubMed DOI

Chiu BC, Soni L, Gapstur SM, Fought AJ, Evens AM, Weisenburger DD. Obesity and risk of non‐Hodgkin lymphoma (United States). Cancer Causes Control. 2007;18(6):677‐685. doi: 10.1007/s10552-007-9013-9 PubMed DOI

Castillo JJ, Ingham RR, Reagan JL, Furman M, Dalia S, Mitri J. Obesity is associated with increased relative risk of diffuse large B‐cell lymphoma: a meta‐analysis of observational studies. Clin Lymphoma Myeloma Leuk. 2014;14(2):122‐130. doi: 10.1016/j.clml.2013.10.005 PubMed DOI

Teras LR, Bertrand KA, Deubler EL, et al. Body size and risk of non‐Hodgkin lymphoma by subtype: a pooled analysis from six prospective cohorts in the United States. Br J Haematol. 2022;197(6):714‐727. doi: 10.1111/bjh.18150 PubMed DOI PMC

Leiba M, Leiba A, Keinan‐Boker L, et al. Adolescent weight and height are predictors of specific non‐Hodgkin lymphoma subtypes among a cohort of 2,352,988 individuals aged 16 to 19 years. Cancer. 2016;122(7):1068‐1077. doi: 10.1002/cncr.29792 PubMed DOI

Kelly JL, Fredericksen ZS, Liebow M, et al. The association between early life and adult body mass index and physical activity with risk of non‐Hodgkin lymphoma: impact of gender. Ann Epidemiol. 2012;22(12):855‐862. doi: 10.1016/j.annepidem.2012.10.002 PubMed DOI PMC

Bertrand KA, Giovannucci E, Zhang SM, Laden F, Rosner B, Birmann BM. A prospective analysis of body size during childhood, adolescence, and adulthood and risk of non‐Hodgkin lymphoma. Cancer Prev Res. 2013;6(8):864‐873. doi: 10.1158/1940-6207.CAPR-13-0132 PubMed DOI PMC

Abar L, Sobiecki JG, Cariolou M, et al. Body size and obesity during adulthood, and risk of lympho‐haematopoietic cancers: an update of the WCRF‐AICR systematic review of published prospective studies. Ann Oncol. 2019;30(4):528‐541. doi: 10.1093/annonc/mdz045 PubMed DOI

Bracci PM, Benavente Y, Turner JJ, et al. Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph non‐Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):52‐65. doi: 10.1093/jncimonographs/lgu011 PubMed DOI PMC

Slager SL, Benavente Y, Blair A, et al. Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph non‐Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):41‐51. doi: 10.1093/jncimonographs/lgu001 PubMed DOI PMC

Linet MS, Vajdic CM, Morton LM, et al. Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma: the InterLymph non‐Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):26‐40. doi: 10.1093/jncimonographs/lgu006 PubMed DOI PMC

Wang Y, Rimm EB, Stampfer MJ, Willett WC, Hu FB. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr. 2005;81(3):555‐563. doi: 10.1093/ajcn/81.3.555 PubMed DOI

Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case‐control study. Lancet. 2005;366(9497):1640‐1649. doi: 10.1016/S0140-6736(05)67663-5 PubMed DOI

Harding JL, Shaw JE, Anstey KJ, et al. Comparison of anthropometric measures as predictors of cancer incidence: a pooled collaborative analysis of 11 Australian cohorts. Int J Cancer. 2015;137(7):1699‐1708. doi: 10.1002/ijc.29529 PubMed DOI

Cerhan JR, Janney CA, Vachon CM, et al. Anthropometric characteristics, physical activity, and risk of non‐Hodgkin's lymphoma subtypes and B‐cell chronic lymphocytic leukemia: a prospective study. Am J Epidemiol. 2002;156(6):527‐535. doi: 10.1093/aje/kwf082 PubMed DOI

Lim U, Morton LM, Subar AF, et al. Alcohol, smoking, and body size in relation to incident Hodgkin's and non‐Hodgkin's lymphoma risk. Am J Epidemiol. 2007;166(6):697‐708. doi: 10.1093/aje/kwm122 PubMed DOI

Lu Y, Prescott J, Sullivan‐Halley J, et al. Body size, recreational physical activity, and B‐cell non‐Hodgkin lymphoma risk among women in the California teachers study. Am J Epidemiol. 2009;170(10):1231‐1240. doi: 10.1093/aje/kwp268 PubMed DOI PMC

Kabat GC, Kim MY, ‐Wactawski‐Wende J, et al. Anthropometric factors, physical activity, and risk of non‐Hodgkin's lymphoma in the Women's Health Initiative. Cancer Epidemiol. 2012;36(1):52‐59. doi: 10.1016/j.canep.2011.05.014 PubMed DOI PMC

Yengo L, Sidorenko J, Kemper KE, et al. Meta‐analysis of genome‐wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641‐3649. doi: 10.1093/hmg/ddy271 PubMed DOI PMC

Pulit SL, Stoneman C, Morris AP, et al. Meta‐analysis of genome‐wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet. 2019;28(1):166‐174. doi: 10.1093/hmg/ddy327 PubMed DOI PMC

Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020;12(1):44. doi: 10.1186/s13073-020-00742-5 PubMed DOI PMC

Sanderson E, Glymour MM, Holmes MV, et al. Mendelian randomization. Nat Rev Methods Primers. 2022;2:2. doi: 10.1038/s43586-021-00092-5 PubMed DOI PMC

Bull CJ, Bell JA, Murphy N, et al. Adiposity, metabolites, and colorectal cancer risk: mendelian randomization study. BMC Med. 2020;18(1):396. doi: 10.1186/s12916-020-01855-9 PubMed DOI PMC

Mariosa D, Smith‐Byrne K, Richardson TG, et al. Body size at different ages and risk of 6 cancers: a mendelian randomization and prospective cohort study. J Natl Cancer Inst. 2022;114(9):1296‐1300. doi: 10.1093/jnci/djac061 PubMed DOI PMC

Berndt SI, Vijai J, Benavente Y, et al. Distinct germline genetic susceptibility profiles identified for common non‐Hodgkin lymphoma subtypes. Leukemia. 2022;36(12):2835‐2844. doi: 10.1038/s41375-022-01711-0 PubMed DOI PMC

Morton LM, Slager SL, Cerhan JR, et al. Etiologic heterogeneity among non‐Hodgkin lymphoma subtypes: the InterLymph non‐Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):130‐144. doi: 10.1093/jncimonographs/lgu013 PubMed DOI PMC

Berndt SI, Skibola CF, Joseph V, et al. Genome‐wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat Genet. 2013;45(8):868‐876. doi: 10.1038/ng.2652 PubMed DOI PMC

Cerhan JR, Berndt SI, Vijai J, et al. Genome‐wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat Genet. 2014;46(11):1233‐1238. doi: 10.1038/ng.3105 PubMed DOI PMC

Skibola CF, Berndt SI, Vijai J, et al. Genome‐wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region. Am J Hum Genet. 2014;95(4):462‐471. doi: 10.1016/j.ajhg.2014.09.004 PubMed DOI PMC

Vijai J, Wang Z, Berndt SI, et al. A genome‐wide association study of marginal zone lymphoma shows association to the HLA region. Nat Commun. 2015;6:5751. doi: 10.1038/ncomms6751 PubMed DOI PMC

Conde L, Halperin E, Akers NK, et al. Genome‐wide association study of follicular lymphoma identifies a risk locus at 6p21.32. Nat Genet. 2010;42(8):661‐664. doi: 10.1038/ng.626 PubMed DOI PMC

de Vivo I, Prescott J, Setiawan VW, et al. Genome‐wide association study of endometrial cancer in E2C2. Hum Genet. 2014;133(2):211‐224. doi: 10.1007/s00439-013-1369-1 PubMed DOI PMC

Smedby KE, Foo JN, Skibola CF, et al. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B‐cell lymphoma. PLoS Genet. 2011;7(4):e1001378. doi: 10.1371/journal.pgen.1001378 PubMed DOI PMC

Slager SL, Rabe KG, Achenbach SJ, et al. Genome‐wide association study identifies a novel susceptibility locus at 6p21.3 among familial CLL. Blood. 2011;117(6):1911‐1916. doi: 10.1182/blood-2010-09-308205 PubMed DOI PMC

Schumacher FR, Berndt SI, Siddiq A, et al. Genome‐wide association study identifies new prostate cancer susceptibility loci. Hum Mol Genet. 2011;20(19):3867‐3875. doi: 10.1093/hmg/ddr295 PubMed DOI PMC

Siddiq A, Couch FJ, Chen GK, et al. A meta‐analysis of genome‐wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. Hum Mol Genet. 2012;21(24):5373‐5384. doi: 10.1093/hmg/dds381 PubMed DOI PMC

Cerhan JR, Fredericksen ZS, Wang AH, et al. Design and validity of a clinic‐based case‐control study on the molecular epidemiology of lymphoma. Int J Mol Epidemiol Genet. 2011;2(2):95‐113. https://www.ncbi.nlm.nih.gov/pubmed/21686124 PubMed PMC

Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome‐wide association studies. PLoS Genet. 2009;5(6):e1000529. doi: 10.1371/journal.pgen.1000529 PubMed DOI PMC

Genomes Project C , Abecasis GR, Altshuler D, et al. A map of human genome variation from population‐scale sequencing. Nature. 2010;467(7319):1061‐1073. doi: 10.1038/nature09534 PubMed DOI PMC

Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13(11):e1007081. doi: 10.1371/journal.pgen.1007081 PubMed DOI PMC

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289‐300.

Hemani G, Zheng J, Elsworth B, et al. The MR‐base platform supports systematic causal inference across the human phenome. Elife. 2018;7:7. doi: 10.7554/eLife.34408 PubMed DOI PMC

Lauby‐Secretan B, Scoccianti C, Loomis D, et al. Body fatness and cancer—viewpoint of the IARC working group. N Engl J Med. 2016;375(8):794‐798. doi: 10.1056/NEJMsr1606602 PubMed DOI PMC

Cerhan JR, Kricker A, Paltiel O, et al. Medical history, lifestyle, family history, and occupational risk factors for diffuse large B‐cell lymphoma: the InterLymph non‐Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):15‐25. doi: 10.1093/jncimonographs/lgu010 PubMed DOI PMC

Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol. 2014;10(8):455‐465. doi: 10.1038/nrendo.2014.94 PubMed DOI PMC

Matthews KA, Crawford SL, Chae CU, et al. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? J Am Coll Cardiol. 2009;54(25):2366‐2373. doi: 10.1016/j.jacc.2009.10.009 PubMed DOI PMC

Schousboe K, Willemsen G, Kyvik KO, et al. Sex differences in heritability of BMI: a comparative study of results from twin studies in eight countries. Twin Res. 2003;6(5):409‐421. doi: 10.1375/136905203770326411 PubMed DOI

Silventoinen K, Jelenkovic A, Sund R, et al. Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual‐based pooled analysis of 45 twin cohorts participating in the COllaborative project of development of anthropometrical measures in twins (CODATwins) study. Am J Clin Nutr. 2016;104(2):371‐379. doi: 10.3945/ajcn.116.130252 PubMed DOI PMC

Jarvis D, Mitchell JS, Law PJ, et al. Mendelian randomisation analysis strongly implicates adiposity with risk of developing colorectal cancer. Br J Cancer. 2016;115(2):266‐272. doi: 10.1038/bjc.2016.188 PubMed DOI PMC

Burgess S. Sample size and power calculations in mendelian randomization with a single instrumental variable and a binary outcome. Int J Epidemiol. 2014;43(3):922‐929. doi: 10.1093/ije/dyu005 PubMed DOI PMC

Hidayat K, Li HJ, Shi BM. Anthropometric factors and non‐Hodgkin's lymphoma risk: systematic review and meta‐analysis of prospective studies. Crit Rev Oncol Hematol. 2018;129:113‐123. doi: 10.1016/j.critrevonc.2018.05.018 PubMed DOI

Snijder MB, Dekker JM, Visser M, et al. Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: the Hoorn study. Diabetes Care. 2004;27(2):372‐377. doi: 10.2337/diacare.27.2.372 PubMed DOI

Shungin D, Winkler TW, Croteau‐Chonka DC, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518(7538):187‐196. doi: 10.1038/nature14132 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...