Genetically determined body mass index is associated with diffuse large B-cell lymphoma in polygenic and Mendelian randomization analyses
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
HHSN268201100001I
NHLBI NIH HHS - United States
HHSN268201100046C
NHLBI NIH HHS - United States
U58 DP000807
NCCDPHP CDC HHS - United States
HHSN261201000034C
NCI NIH HHS - United States
R01 CA134674
NCI NIH HHS - United States
HHSN268201100001C
WHI NIH HHS - United States
P30 CA016087
NCI NIH HHS - United States
HHSN261201000140C
NCI NIH HHS - United States
R01 CA098122
NCI NIH HHS - United States
U01 HG007033
NHGRI NIH HHS - United States
P01 CA087969
NCI NIH HHS - United States
HHSN261201000035C
NCI NIH HHS - United States
R01 CA134958
NCI NIH HHS - United States
R21 CA165923
NCI NIH HHS - United States
HHSN268201100004I
NHLBI NIH HHS - United States
P30 CA086862
NCI NIH HHS - United States
U01 CA167552
NCI NIH HHS - United States
HHSN268201100003C
WHI NIH HHS - United States
R01 CA148690
NCI NIH HHS - United States
HHSN261201800016C
NCI NIH HHS - United States
P30 ES000260
NIEHS NIH HHS - United States
R01 CA154643
NCI NIH HHS - United States
R01 CA062006
NCI NIH HHS - United States
K08 CA134919
NCI NIH HHS - United States
UL1 TR000135
NCATS NIH HHS - United States
HHSN271201100004C
NIA NIH HHS - United States
R01 CA098661
NCI NIH HHS - United States
HHSN261201800016I
NCI NIH HHS - United States
UM1 CA186107
NCI NIH HHS - United States
HHSN268201100002C
WHI NIH HHS - United States
P30 CA015083
NCI NIH HHS - United States
R01 CA092153
NCI NIH HHS - United States
HHSN261201000035I
NCI NIH HHS - United States
P50 CA097274
NCI NIH HHS - United States
HHSN268201100003I
NHLBI NIH HHS - United States
R01 CA049449
NCI NIH HHS - United States
HHSN268201100002I
NHLBI NIH HHS - United States
R01 CA149445
NCI NIH HHS - United States
U01 CA257679
NCI NIH HHS - United States
HHSN268201100004C
WHI NIH HHS - United States
U01 CA118444
NCI NIH HHS - United States
P30 CA042014
NCI NIH HHS - United States
PubMed
40910475
PubMed Central
PMC12588556
DOI
10.1002/ijc.70039
Knihovny.cz E-zdroje
- MeSH
- adipozita genetika MeSH
- celogenomová asociační studie MeSH
- chronická lymfatická leukemie genetika MeSH
- difúzní velkobuněčný B-lymfom * genetika epidemiologie MeSH
- folikulární lymfom genetika MeSH
- genetická predispozice k nemoci MeSH
- index tělesné hmotnosti * MeSH
- jednonukleotidový polymorfismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mendelovská randomizace MeSH
- multifaktoriální dědičnost * MeSH
- obezita * genetika komplikace MeSH
- poměr pasu a boků MeSH
- rizikové faktory MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Obesity has been associated with non-Hodgkin lymphoma (NHL), but the evidence is inconclusive. We examined the association between genetically determined adiposity and four common NHL subtypes: diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, chronic lymphocytic leukemia, and marginal zone lymphoma, using eight genome-wide association studies of European ancestry (N = 10,629 cases, 9505 controls) and constructing polygenic scores for body mass index (BMI), waist-to-hip ratio (WHR), and waist-to-hip ratio adjusted for BMI (WHRadjBMI). Higher genetically determined BMI was associated with an increased risk of DLBCL [odds ratio (OR) per standard deviation (SD) = 1.18, 95% confidence interval (95% CI): 1.05-1.33, p = .005]. This finding was consistent with Mendelian randomization analyses, which demonstrated a similar increased risk of DLBCL with higher genetically determined BMI (ORper SD = 1.12, 95% CI: 1.02-1.23, p = .03). No significant associations were observed with other NHL subtypes. Our study demonstrates a positive link between a genetically determined BMI and an increased risk of DLBCL, providing additional support for increased adiposity as a risk factor for DLBCL.
Bill Lyons Informatics Centre UCL Cancer Institute University College London London UK
Cancer Control Research BC Cancer Vancouver British Columbia Canada
Cancer Epidemiology Division Cancer Council Victoria Melbourne Victoria Australia
Cancer Epidemiology Research Programme Catalan Institute of Oncology IDIBELL Barcelona Spain
Cancer Epidemiology Unit University of Oxford Oxford UK
Cancer Research Center of Lyon INSERM U1052 Centre Léon Bérard Lyon France
Concord Clinical School University of Sydney Concord New South Wales Australia
Danish Cancer Institute Danish Cancer Society Copenhagen Denmark
Danish Cancer Society Research Center Danish Cancer Society Copenhagen Denmark
Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic
Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
Department of Computational Biology St Jude Children's Research Hospital Memphis Tennessee USA
Department of Environmental Medicine New York University School of Medicine New York New York USA
Department of Epidemiology Brown University Providence Rhode Island USA
Department of Epidemiology Harvard T H Chan School of Public Health Boston Massachusetts USA
Department of Family Medicine and Public Health Sciences Wayne State University Detroit Michigan USA
Department of Genetics Stanford University Medical School Stanford California USA
Department of Haematology Rigshospitalet Copenhagen Denmark
Department of Health Sciences University of York York UK
Department of Hematology Hospices Civils de Lyon Lyon Sud Hospital Pierre Benite France
Department of Immunology Genetics and Pathology Uppsala University Uppsala Sweden
Department of Internal Medicine Carver College of Medicine The University of Iowa Iowa City Iowa USA
Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
Department of Medical and Surgical Sciences University of Bologna Bologna Italy
Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden
Department of Medicine Memorial Sloan Kettering Cancer Center New York New York USA
Department of Medicine Solna Karolinska Institutet Stockholm Sweden
Department of Obstetrics and Gynecology New York University School of Medicine New York New York USA
Department of Population Science American Cancer Society Atlanta Georgia USA
Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda Maryland USA
Division of Cancer Epidemiology German Cancer Research Center Heidelberg Baden Württemberg Germany
Division of Health Analytics City of Hope Beckman Research Institute Duarte California USA
Division of Public Health Sciences Fred Hutchinson Cancer Research Center Seattle Washington DC USA
Genome Sciences Centre BC Cancer Vancouver British Columbia Canada
Genomic Epidemiology Branch International Agency for Research on Cancer Lyon France
Genomic Epidemiology Group German Cancer Research Center Heidelberg Germany
Hematology Center Karolinska University Hospital Stockholm Sweden
Institute of Health and Society Clinical Effectiveness Research Group University of Oslo Oslo Norway
Medicine and Health Sciences Department Jebsen Center for Genetic Epidemiology NTNU Trondheim Norway
National Registry of Childhood Cancers APHP CHU Paul Brousse Villejuif and CHU de Nancy France
Perlmutter Cancer Center NYU Langone Medical Center New York New York USA
Quantitative Health Sciences Mayo Clinic Rochester Minnesota USA
Registre des hémopathies malignes de la Gironde Institut Bergonié Bordeaux Cedex France
School of Nursing Psychotherapy and Community Health Dublin City University Dublin Ireland
Stony Brook Cancer Center Stony Brook University Stony Brook New York USA
Unidad de Infecciones y Cáncer CIBER de Epidemiología y Salud Pública Barcelona Spain
Unit of Mixed Research INSERM Université Paris Cité Paris France
Zobrazit více v PubMed
Chang ET, Hjalgrim H, Smedby KE, et al. Body mass index and risk of malignant lymphoma in Scandinavian men and women. J Natl Cancer Inst. 2005;97(3):210‐218. doi: 10.1093/jnci/dji012 PubMed DOI
Britton JA, Khan AE, Rohrmann S, et al. Anthropometric characteristics and non‐Hodgkin's lymphoma and multiple myeloma risk in the European prospective investigation into cancer and nutrition (EPIC). Haematologica. 2008;93(11):1666‐1677. doi: 10.3324/haematol.13078 PubMed DOI
Willett EV, Morton LM, Hartge P, et al. Non‐Hodgkin lymphoma and obesity: a pooled analysis from the InterLymph consortium. Int J Cancer. 2008;122(9):2062‐2070. doi: 10.1002/ijc.23344 PubMed DOI PMC
Murphy F, Kroll ME, Pirie K, Reeves G, Green J, Beral V. Body size in relation to incidence of subtypes of haematological malignancy in the prospective million women study. Br J Cancer. 2013;108(11):2390‐2398. doi: 10.1038/bjc.2013.159 PubMed DOI PMC
Larsson SC, Wolk A. Obesity and risk of non‐Hodgkin's lymphoma: a meta‐analysis. Int J Cancer. 2007;121(7):1564‐1570. doi: 10.1002/ijc.22762 PubMed DOI
Larsson SC, Wolk A. Body mass index and risk of non‐Hodgkin's and Hodgkin's lymphoma: a meta‐analysis of prospective studies. Eur J Cancer. 2011;47(16):2422‐2430. doi: 10.1016/j.ejca.2011.06.029 PubMed DOI
Patel AV, Diver WR, Teras LR, Birmann BM, Gapstur SM. Body mass index, height and risk of lymphoid neoplasms in a large United States cohort. Leuk Lymphoma. 2013;54(6):1221‐1227. doi: 10.3109/10428194.2012.742523 PubMed DOI
Chiu BC, Soni L, Gapstur SM, Fought AJ, Evens AM, Weisenburger DD. Obesity and risk of non‐Hodgkin lymphoma (United States). Cancer Causes Control. 2007;18(6):677‐685. doi: 10.1007/s10552-007-9013-9 PubMed DOI
Castillo JJ, Ingham RR, Reagan JL, Furman M, Dalia S, Mitri J. Obesity is associated with increased relative risk of diffuse large B‐cell lymphoma: a meta‐analysis of observational studies. Clin Lymphoma Myeloma Leuk. 2014;14(2):122‐130. doi: 10.1016/j.clml.2013.10.005 PubMed DOI
Teras LR, Bertrand KA, Deubler EL, et al. Body size and risk of non‐Hodgkin lymphoma by subtype: a pooled analysis from six prospective cohorts in the United States. Br J Haematol. 2022;197(6):714‐727. doi: 10.1111/bjh.18150 PubMed DOI PMC
Leiba M, Leiba A, Keinan‐Boker L, et al. Adolescent weight and height are predictors of specific non‐Hodgkin lymphoma subtypes among a cohort of 2,352,988 individuals aged 16 to 19 years. Cancer. 2016;122(7):1068‐1077. doi: 10.1002/cncr.29792 PubMed DOI
Kelly JL, Fredericksen ZS, Liebow M, et al. The association between early life and adult body mass index and physical activity with risk of non‐Hodgkin lymphoma: impact of gender. Ann Epidemiol. 2012;22(12):855‐862. doi: 10.1016/j.annepidem.2012.10.002 PubMed DOI PMC
Bertrand KA, Giovannucci E, Zhang SM, Laden F, Rosner B, Birmann BM. A prospective analysis of body size during childhood, adolescence, and adulthood and risk of non‐Hodgkin lymphoma. Cancer Prev Res. 2013;6(8):864‐873. doi: 10.1158/1940-6207.CAPR-13-0132 PubMed DOI PMC
Abar L, Sobiecki JG, Cariolou M, et al. Body size and obesity during adulthood, and risk of lympho‐haematopoietic cancers: an update of the WCRF‐AICR systematic review of published prospective studies. Ann Oncol. 2019;30(4):528‐541. doi: 10.1093/annonc/mdz045 PubMed DOI
Bracci PM, Benavente Y, Turner JJ, et al. Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph non‐Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):52‐65. doi: 10.1093/jncimonographs/lgu011 PubMed DOI PMC
Slager SL, Benavente Y, Blair A, et al. Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph non‐Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):41‐51. doi: 10.1093/jncimonographs/lgu001 PubMed DOI PMC
Linet MS, Vajdic CM, Morton LM, et al. Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma: the InterLymph non‐Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):26‐40. doi: 10.1093/jncimonographs/lgu006 PubMed DOI PMC
Wang Y, Rimm EB, Stampfer MJ, Willett WC, Hu FB. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am J Clin Nutr. 2005;81(3):555‐563. doi: 10.1093/ajcn/81.3.555 PubMed DOI
Yusuf S, Hawken S, Ounpuu S, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case‐control study. Lancet. 2005;366(9497):1640‐1649. doi: 10.1016/S0140-6736(05)67663-5 PubMed DOI
Harding JL, Shaw JE, Anstey KJ, et al. Comparison of anthropometric measures as predictors of cancer incidence: a pooled collaborative analysis of 11 Australian cohorts. Int J Cancer. 2015;137(7):1699‐1708. doi: 10.1002/ijc.29529 PubMed DOI
Cerhan JR, Janney CA, Vachon CM, et al. Anthropometric characteristics, physical activity, and risk of non‐Hodgkin's lymphoma subtypes and B‐cell chronic lymphocytic leukemia: a prospective study. Am J Epidemiol. 2002;156(6):527‐535. doi: 10.1093/aje/kwf082 PubMed DOI
Lim U, Morton LM, Subar AF, et al. Alcohol, smoking, and body size in relation to incident Hodgkin's and non‐Hodgkin's lymphoma risk. Am J Epidemiol. 2007;166(6):697‐708. doi: 10.1093/aje/kwm122 PubMed DOI
Lu Y, Prescott J, Sullivan‐Halley J, et al. Body size, recreational physical activity, and B‐cell non‐Hodgkin lymphoma risk among women in the California teachers study. Am J Epidemiol. 2009;170(10):1231‐1240. doi: 10.1093/aje/kwp268 PubMed DOI PMC
Kabat GC, Kim MY, ‐Wactawski‐Wende J, et al. Anthropometric factors, physical activity, and risk of non‐Hodgkin's lymphoma in the Women's Health Initiative. Cancer Epidemiol. 2012;36(1):52‐59. doi: 10.1016/j.canep.2011.05.014 PubMed DOI PMC
Yengo L, Sidorenko J, Kemper KE, et al. Meta‐analysis of genome‐wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641‐3649. doi: 10.1093/hmg/ddy271 PubMed DOI PMC
Pulit SL, Stoneman C, Morris AP, et al. Meta‐analysis of genome‐wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet. 2019;28(1):166‐174. doi: 10.1093/hmg/ddy327 PubMed DOI PMC
Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020;12(1):44. doi: 10.1186/s13073-020-00742-5 PubMed DOI PMC
Sanderson E, Glymour MM, Holmes MV, et al. Mendelian randomization. Nat Rev Methods Primers. 2022;2:2. doi: 10.1038/s43586-021-00092-5 PubMed DOI PMC
Bull CJ, Bell JA, Murphy N, et al. Adiposity, metabolites, and colorectal cancer risk: mendelian randomization study. BMC Med. 2020;18(1):396. doi: 10.1186/s12916-020-01855-9 PubMed DOI PMC
Mariosa D, Smith‐Byrne K, Richardson TG, et al. Body size at different ages and risk of 6 cancers: a mendelian randomization and prospective cohort study. J Natl Cancer Inst. 2022;114(9):1296‐1300. doi: 10.1093/jnci/djac061 PubMed DOI PMC
Berndt SI, Vijai J, Benavente Y, et al. Distinct germline genetic susceptibility profiles identified for common non‐Hodgkin lymphoma subtypes. Leukemia. 2022;36(12):2835‐2844. doi: 10.1038/s41375-022-01711-0 PubMed DOI PMC
Morton LM, Slager SL, Cerhan JR, et al. Etiologic heterogeneity among non‐Hodgkin lymphoma subtypes: the InterLymph non‐Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):130‐144. doi: 10.1093/jncimonographs/lgu013 PubMed DOI PMC
Berndt SI, Skibola CF, Joseph V, et al. Genome‐wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat Genet. 2013;45(8):868‐876. doi: 10.1038/ng.2652 PubMed DOI PMC
Cerhan JR, Berndt SI, Vijai J, et al. Genome‐wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. Nat Genet. 2014;46(11):1233‐1238. doi: 10.1038/ng.3105 PubMed DOI PMC
Skibola CF, Berndt SI, Vijai J, et al. Genome‐wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region. Am J Hum Genet. 2014;95(4):462‐471. doi: 10.1016/j.ajhg.2014.09.004 PubMed DOI PMC
Vijai J, Wang Z, Berndt SI, et al. A genome‐wide association study of marginal zone lymphoma shows association to the HLA region. Nat Commun. 2015;6:5751. doi: 10.1038/ncomms6751 PubMed DOI PMC
Conde L, Halperin E, Akers NK, et al. Genome‐wide association study of follicular lymphoma identifies a risk locus at 6p21.32. Nat Genet. 2010;42(8):661‐664. doi: 10.1038/ng.626 PubMed DOI PMC
de Vivo I, Prescott J, Setiawan VW, et al. Genome‐wide association study of endometrial cancer in E2C2. Hum Genet. 2014;133(2):211‐224. doi: 10.1007/s00439-013-1369-1 PubMed DOI PMC
Smedby KE, Foo JN, Skibola CF, et al. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B‐cell lymphoma. PLoS Genet. 2011;7(4):e1001378. doi: 10.1371/journal.pgen.1001378 PubMed DOI PMC
Slager SL, Rabe KG, Achenbach SJ, et al. Genome‐wide association study identifies a novel susceptibility locus at 6p21.3 among familial CLL. Blood. 2011;117(6):1911‐1916. doi: 10.1182/blood-2010-09-308205 PubMed DOI PMC
Schumacher FR, Berndt SI, Siddiq A, et al. Genome‐wide association study identifies new prostate cancer susceptibility loci. Hum Mol Genet. 2011;20(19):3867‐3875. doi: 10.1093/hmg/ddr295 PubMed DOI PMC
Siddiq A, Couch FJ, Chen GK, et al. A meta‐analysis of genome‐wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. Hum Mol Genet. 2012;21(24):5373‐5384. doi: 10.1093/hmg/dds381 PubMed DOI PMC
Cerhan JR, Fredericksen ZS, Wang AH, et al. Design and validity of a clinic‐based case‐control study on the molecular epidemiology of lymphoma. Int J Mol Epidemiol Genet. 2011;2(2):95‐113. https://www.ncbi.nlm.nih.gov/pubmed/21686124 PubMed PMC
Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome‐wide association studies. PLoS Genet. 2009;5(6):e1000529. doi: 10.1371/journal.pgen.1000529 PubMed DOI PMC
Genomes Project C , Abecasis GR, Altshuler D, et al. A map of human genome variation from population‐scale sequencing. Nature. 2010;467(7319):1061‐1073. doi: 10.1038/nature09534 PubMed DOI PMC
Hemani G, Tilling K, Davey Smith G. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13(11):e1007081. doi: 10.1371/journal.pgen.1007081 PubMed DOI PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289‐300.
Hemani G, Zheng J, Elsworth B, et al. The MR‐base platform supports systematic causal inference across the human phenome. Elife. 2018;7:7. doi: 10.7554/eLife.34408 PubMed DOI PMC
Lauby‐Secretan B, Scoccianti C, Loomis D, et al. Body fatness and cancer—viewpoint of the IARC working group. N Engl J Med. 2016;375(8):794‐798. doi: 10.1056/NEJMsr1606602 PubMed DOI PMC
Cerhan JR, Kricker A, Paltiel O, et al. Medical history, lifestyle, family history, and occupational risk factors for diffuse large B‐cell lymphoma: the InterLymph non‐Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014(48):15‐25. doi: 10.1093/jncimonographs/lgu010 PubMed DOI PMC
Park J, Morley TS, Kim M, Clegg DJ, Scherer PE. Obesity and cancer—mechanisms underlying tumour progression and recurrence. Nat Rev Endocrinol. 2014;10(8):455‐465. doi: 10.1038/nrendo.2014.94 PubMed DOI PMC
Matthews KA, Crawford SL, Chae CU, et al. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? J Am Coll Cardiol. 2009;54(25):2366‐2373. doi: 10.1016/j.jacc.2009.10.009 PubMed DOI PMC
Schousboe K, Willemsen G, Kyvik KO, et al. Sex differences in heritability of BMI: a comparative study of results from twin studies in eight countries. Twin Res. 2003;6(5):409‐421. doi: 10.1375/136905203770326411 PubMed DOI
Silventoinen K, Jelenkovic A, Sund R, et al. Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual‐based pooled analysis of 45 twin cohorts participating in the COllaborative project of development of anthropometrical measures in twins (CODATwins) study. Am J Clin Nutr. 2016;104(2):371‐379. doi: 10.3945/ajcn.116.130252 PubMed DOI PMC
Jarvis D, Mitchell JS, Law PJ, et al. Mendelian randomisation analysis strongly implicates adiposity with risk of developing colorectal cancer. Br J Cancer. 2016;115(2):266‐272. doi: 10.1038/bjc.2016.188 PubMed DOI PMC
Burgess S. Sample size and power calculations in mendelian randomization with a single instrumental variable and a binary outcome. Int J Epidemiol. 2014;43(3):922‐929. doi: 10.1093/ije/dyu005 PubMed DOI PMC
Hidayat K, Li HJ, Shi BM. Anthropometric factors and non‐Hodgkin's lymphoma risk: systematic review and meta‐analysis of prospective studies. Crit Rev Oncol Hematol. 2018;129:113‐123. doi: 10.1016/j.critrevonc.2018.05.018 PubMed DOI
Snijder MB, Dekker JM, Visser M, et al. Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: the Hoorn study. Diabetes Care. 2004;27(2):372‐377. doi: 10.2337/diacare.27.2.372 PubMed DOI
Shungin D, Winkler TW, Croteau‐Chonka DC, et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature. 2015;518(7538):187‐196. doi: 10.1038/nature14132 PubMed DOI PMC