The Solvothermal Method: An Efficient Tool for the Preparation of Ni-Based Catalysts with High Activity in CO2 Methanation
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/17_048/0007323
Ministry of Education Youth and Sports
LM2023066
Ministry of Education Youth and Sports
24-14097L
Czech Science Foundation
IGA_Prf_2025_024
Palacký University Olomouc
PubMed
40938057
PubMed Central
PMC12430002
DOI
10.3390/nano15171379
PII: nano15171379
Knihovny.cz E-resources
- Keywords
- carbon dioxide, heterogeneous catalysis, methanation, microparticles, nanoparticles, nickel oxide,
- Publication type
- Journal Article MeSH
Nickel and nickel oxide are widely used as heterogeneous catalysts in various processes involving the hydrogenation or reduction of organic compounds, and also as excellent methanation catalysts in the hydrogenation of CO2. As heterogeneous catalysis is a surface-dependent process, nickel compounds in the form of microparticles (MPs), and particularly nanoparticles (NPs), improve the catalytic activity of Ni-based catalysts due to their high specific surface area. Solvothermal synthesis, which has so far been neglected for the synthesis of Ni-based methanation catalysts, was used in this study to synthesize nickel and nickel oxide MPs and NPs with a narrow size distribution. Solvothermal synthesis allows for the control of both the chemical composition of the resulting Ni catalysts and their physical structure by simply changing the reaction conditions (solvent, temperature, or concentration of reactants). Only non-toxic substances were used for synthesis in this study, meaning that the whole synthesis process can be described as environmentally friendly. Solvothermally prepared Ni compounds were subsequently transformed into nickel oxide by means of high-temperature decomposition, and all of the prepared Ni-based compounds were tested as catalysts for CO2 methanation. The best catalysts prepared in this study exhibited a CO2 conversion rate of nearly 95% and a selectivity for methane close to 100%, which represent thermodynamic limits for this reaction at the used temperature. These results are commonly achieved with much more complex catalytic composites containing precious metals, while here we worked with pure nickel and its oxides, in the form of micro- or nanoparticles, only.
See more in PubMed
Zaiman N.F.H.N., Shaari N. Review on flower-like structure nickel-based catalyst in fuel cell application. J. Ind. Eng. Chem. 2023;119:1–76. doi: 10.1016/j.jiec.2022.11.048. DOI
Lycourghiotis S., Kordouli E., Bourikas K., Kordulis C. The role of promoters in metallic nickel catalysts used for green diesel production: A critical review. Fuel Process. Technol. 2023;244:107690. doi: 10.1016/j.fuproc.2023.107690. DOI
Ghatak A., Das M. The Recent Progress on Supported and Recyclable Nickel Catalysts towards Organic Transformations: A Review. ChemistrySelect. 2021;6:3656–3682. doi: 10.1002/slct.202100727. DOI
Wang R., Zhang M., Zhang J., Yang J.H. Supported Nickel-based Catalysts for Heterogeneous Hydrogenation of Aromatics. ChemistrySelect. 2023;8:e202302787. doi: 10.1002/slct.202302787. DOI
Shi D.C., Wojcieszak R., Paul S., Marceau E. Ni Promotion by Fe: What Benefits for Catalytic Hydrogenation? Catalysts. 2019;9:451. doi: 10.3390/catal9050451. DOI
Lieber E., Morritz F.L. The Uses of Raney Nickel. Adv. Catal. 1953;5:417–455. doi: 10.1016/S0360-0564(08)60647-1. DOI
Sun Z.H., Zhang Z.H., Yuan T.Q., Ren X.H., Rong Z.M. Raney Ni as a Versatile Catalyst for Biomass Conversion. ACS Catal. 2021;11:10508–10536. doi: 10.1021/acscatal.1c02433. DOI
Bonomo M., Dini D., Decker F. Electrochemical and Photoelectrochemical Properties of Nickel Oxide (NiO) with Nanostructured Morphology for Photoconversion Applications. Front. Chem. 2018;6:601. doi: 10.3389/fchem.2018.00601. PubMed DOI PMC
Singh H., Rai A., Yadav R., Sinha A.K. Glucose hydrogenation to sorbitol over unsupported mesoporous Ni/NiO catalyst. Mol. Catal. 2018;451:186–191. doi: 10.1016/j.mcat.2018.01.010. DOI
Liu L.D., Liu Q., Wang Y., Huang J., Wang W.J., Duan L., Yang X., Yu X.Y., Han X., Liu N. Nonradical activation of peroxydisulfate promoted by oxygen vacancy-laden NiO for catalytic phenol oxidative polymerization. Appl. Catal. B-Environ. 2019;254:166–173. doi: 10.1016/j.apcatb.2019.04.094. DOI
Gong S.Y., Wang A.Q., Wang Y., Liu H.D., Han N., Chen Y.F. Heterostructured Ni/NiO Nanocatalysts for Ozone Decomposition. Acs Appl. Nano Mater. 2020;3:597–607. doi: 10.1021/acsanm.9b02143. DOI
Bikbashev A., Stryšovský T., Kajabová M., Kovářová Z., Prucek R., Panáček A., Kašlík J., Fodor T., Cserháti C., Erdélyi Z., et al. NiO Nano- and Microparticles Prepared by Solvothermal Method—Amazing Catalysts for CO2 Methanation. Molecules. 2024;29:4838. doi: 10.3390/molecules29204838. PubMed DOI PMC
Zhu Z., Zhang Y., Liu H., Wei N. Synthesis of original spherical α-Ni(OH)2 architectures by microwave-assisted hydrothermal method and their in situ thermal conversion to NiO. Superlattices Microstruct. 2012;51:232–238. doi: 10.1016/j.spmi.2011.11.014. DOI
Morrow G.W. Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons; Hoboken, NJ, USA: 2001. Nickel(II) Peroxide. DOI
Khalaji A.D., Grivani G., Izadi S., Ebadi M. Facile synthesis of Ni/NiO nanocomposites via thermal decomposition. J. Nanoanalysis. 2018;5:115–120. doi: 10.22034/jna.2018.541868. DOI
Zhao B., Yang Y., Bao J.H., Chen H.L. Preparation of NiO nanoparticles via thermal decomposition of nickel acetate coated by CDs. Chin. J. Inorg. Chem. 2006;22:952–956.
Numan A., Duraisamy N., Omar F.S., Gopi D., Ramesh K., Ramesh S. Sonochemical synthesis of nanostructured nickel hydroxide as an electrode material for improved electrochemical energy storage application. Prog. Nat. Sci.-Mater. Int. 2017;27:416–423. doi: 10.1016/j.pnsc.2017.06.003. DOI
Ata S., Tabassum A., Din M.I., Fatima M., Ghafoor S., Islam A., Ahad A., Bhatti M.A. Novel Sonochemical Single Step Fabrication of NiO Nanoparticles. Dig. J. Nanomater. Biostruct. 2016;11:65–80.
Ali M., Remalli N., Gedela V., Padya B., Jain P.K., Al-Fatesh A., Rana U.A., Srikanth V.V.S.S. Ni nanoparticles prepared by simple chemical method for the synthesis of Ni/NiO-multi-layered graphene by chemical vapor deposition. Solid State Sci. 2017;64:34–40. doi: 10.1016/j.solidstatesciences.2016.12.007. DOI
Chandrakala M., Bharath S.R., Maiyalagan T., Arockiasamy S. Synthesis, crystal structure and vapour pressure studies of novel nickel complex as precursor for NiO coating by metalorganic chemical vapour deposition technique. Mater. Chem. Phys. 2017;201:344–353. doi: 10.1016/j.matchemphys.2017.08.056. DOI
Singh Y., Sodhi R.S., Singh P.P., Kaushal S. Biosynthesis of NiO nanoparticles using Spirogyra sp. cell-free extract and their potential biological applications. Mater. Adv. 2022;3:4991–5000. doi: 10.1039/D2MA00114D. DOI
Uddin S., Bin Safdar L., Anwar S., Iqbal J., Laila S., Abbasi B.A., Saif M.S., Ali M., Rehman A., Basit A., et al. Green Synthesis of Nickel Oxide Nanoparticles from Berberis balochistanica Stem for Investigating Bioactivities. Molecules. 2021;26:1548. doi: 10.3390/molecules26061548. PubMed DOI PMC
Ningsih S.K.W. Synthesis and Characterization of NiO Nanopowder by Sol-Gel Process; Proceedings of the 5th International Conference on Mathematics and Natural Sciences; Bandung, Indonesia. 2–3 November 2014; DOI
Zorkipli N.N.M., Kaus N.H.M., Mohamad A.A. Synthesis of NiO Nanoparticles Through Sol-gel Method; Proceedings of the 5th International Conference on Recent Advances in Materials, Minerals and Environment (RAMM) & 2nd International Postgraduate Conference on Materials, Mineral and Polymer (MAMIP); Penang, Malaysia. 4–5 August 2015; pp. 626–631. DOI
Chen T., Yang Y., Zhao W.Y., Pan D.Q., Zhu C.T., Lin F.Y., Guo X.Y. Solvothermal Preparation and Characterization of Nano-nickel Oxide. ACTA Chim. Sin. 2019;77:447–454. doi: 10.6023/A19010033. DOI
Xu J., Wang M.R., Liu Y.Y., Li J., Cui H.T. One-pot solvothermal synthesis of size-controlled NiO nanoparticles. Adv. Powder Technol. 2019;30:861–868. doi: 10.1016/j.apt.2019.01.016. DOI
Poimenidis I.A., Lykaki M., Moustaizis S., Loukakos P., Konsolakis M. One-step solvothermal growth of NiO nanoparticles on nickel foam as a highly efficient electrocatalyst for hydrogen evolution reaction. Mater. Chem. Phys. 2023;305:128007. doi: 10.1016/j.matchemphys.2023.128007. DOI
Zhang Q., Liu H.X., Li H.L., Liu Y., Zhang H.Y., Li T.D. Solvothermal synthesis and photocatalytic properties of NiO ultrathin nanosheets with porous structure. Appl. Surf. Sci. 2015;328:525–530. doi: 10.1016/j.apsusc.2014.12.077. DOI
Abbas S.A., Jung K.D. Preparation of mesoporous microspheres of NiO with high surface area and analysis on their pseudocapacitive behavior. Electrochim. Acta. 2016;193:145–153. doi: 10.1016/j.electacta.2016.02.054. DOI
Wang J., Pang H., Yin J., Guan L., Lu Q., Gao F. Controlled fabrication and property studies of nickel hydroxide and nickel oxide nanostructures. CrystEngComm. 2010;12:1404–1409. doi: 10.1039/B918663H. DOI
Su C., Zhang L., Han Y., Ren C., Chen X., Hu J., Zeng M., Hu N., Su Y., Zhou Z., et al. Controllable synthesis of crescent-shaped porous NiO nanoplates for conductometric ethanol gas sensors. Sens. Actuators B Chem. 2019;296:126642. doi: 10.1016/j.snb.2019.126642. DOI
Zhang Q.H., Kang J.C., Wang Y. Development of Novel Catalysts for Fischer-Tropsch Synthesis: Tuning the Product Selectivity. Chemcatchem. 2010;2:1030–1058. doi: 10.1002/cctc.201000071. DOI
Adesina A.A. Hydrocarbon synthesis via Fischer-Tropsch reaction: Travails and triumphs. Appl. Catal. A-Gen. 1996;138:345–367. doi: 10.1016/0926-860X(95)00307-X. DOI
Ghaib K., Nitz K., Ben-Fares F.Z. Chemical Methanation of CO2: A Review. ChemBioEng Rev. 2016;3:266–275. doi: 10.1002/cben.201600022. DOI
Lee W.J., Li C.E., Prajitno H., Yoo J., Patel J., Yang Y.X., Lim S. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catalysis. 2021;368:2–19. doi: 10.1016/j.cattod.2020.02.017. DOI
Molinet-Chinaglia C., Shafiq S., Serp P. Low Temperature Sabatier CO2 Methanation. Chemcatchem. 2024;16:e202401213. doi: 10.1002/cctc.202401213. DOI
Medina O.E., Amell A.A., López D., Santamaría A. Comprehensive review of nickel-based catalysts advancements for CO2 methanation. Renew. Sustain. Energy Rev. 2024;207:114926. doi: 10.1016/j.rser.2024.114926. DOI
Ridzuan N.D.M., Shaharun M.S., Anawar M.A., Ud-Din I. Ni-Based Catalyst for Carbon Dioxide Methanation: A Review on Performance and Progress. Catalysts. 2022;12:469. doi: 10.3390/catal12050469. DOI
Wang Z.H., Wang L., Cui Y.K., Xing Y., Su W. Research on nickel-based catalysts for carbon dioxide methanation combined with literature measurement. J. CO2 Util. 2022;63:102117. doi: 10.1016/j.jcou.2022.102117. DOI
Deng H., Chen Z.Q., Chen Y.Z., Mei J., Xu W.J., Wang L.S., Peng D.L. Nickel submicron particles synthesized via solvothermal approach in the presence of organic bases: Formation mechanism and magnetic properties. Colloids Surf. A Physicochem. Eng. Asp. 2023;661:130971. doi: 10.1016/j.colsurfa.2023.130971. DOI
Jaji N.D., Othman M.B.H., Lee H.L., Hussin M.H., Hui D. One-pot solvothermal synthesis and characterization of highly stable nickel nanoparticles. Nanotechnol. Rev. 2021;10:318–329. doi: 10.1515/ntrev-2021-0019. DOI
Guo H., Pu B.X., Chen H.Y., Yang J., Zhou Y.J., Yang J., Bismark B., Li H.D., Niu X.B. Surfactant-assisted solvothermal synthesis of pure nickel submicron spheres with microwave-absorbing properties. Nanoscale Res. Lett. 2016;11:352. doi: 10.1186/s11671-016-1562-y. PubMed DOI PMC
Shirley D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B. 1972;5:4709–4714. doi: 10.1103/PhysRevB.5.4709. DOI
Casa Software Ltd. CasaXPS: Processing Software for XPS, AES, SIMS. [(accessed on 4 January 2025)]. Available online: http://www.casaxps.com/
Scofield J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 1976;8:129–137. doi: 10.1016/0368-2048(76)80015-1. DOI
Zheng X., Li B., Huang R., Jiang W., Shen L., Lei G., Wang S., Zhan Y., Jiang L. Asymmetric Oxygen Vacancy-Promoted Synthesis of Aminoarenes from Nitroarenes Using Waste H2S as a “Hydrogen Donor”. ACS Catal. 2024;14:10245–10259. doi: 10.1021/acscatal.4c02478. DOI
Zheng X., Huang R., Li B., Jiang W., Shen L., Lei G., Wang S., Zhan Y., Wang S., Jiang L. Oxygen vacancies-promoted removal of COS via catalytic hydrolysis over CuTiO2-δ nanoflowers. Chem. Eng. J. 2024;492:152322. doi: 10.1016/j.cej.2024.152322. DOI
Dai J., Zhu Y., Tahini H.A., Lin Q., Chen Y., Guan D., Zhou C., Hu Z., Lin H.J., Chan T.S., et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020;11:5657. doi: 10.1038/s41467-020-19433-1. PubMed DOI PMC
Schmider D., Maier L., Deutschmann O. Reaction Kinetics of CO and CO2 Methanation over Nickel. Kinet. Catal. React. Eng. 2021;60:5792–5805. doi: 10.1021/acs.iecr.1c00389. DOI
Zhu J., Cannizzaro F., Liu L., Zhang H., Kosinov N., Filot I.A., Rabeah J., Brückner A., Hensen E.J. Ni–In Synergy in CO2 Hydrogenation to Methanol. ACS Catal. 2021;11:11371–11384. doi: 10.1021/acscatal.1c03170. PubMed DOI PMC
Tangstad E., Andersen A., Myhrvold E.M., Myrstad T. Catalytic behaviour of nickel and iron metal contaminants of an FCC catalyst after oxidative and reductive thermal treatments. Appl. Catal. A Gen. 2008;346:194–199. doi: 10.1016/j.apcata.2008.05.022. DOI
Yarbaş T., Ayas N. A detailed thermodynamic analysis of CO2 hydrogenation to produce methane at low pressure. Int. J. Hydrogen Energy. 2024;49:1134–1144. doi: 10.1016/j.ijhydene.2023.06.223. DOI
Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI
Danaci S., Protasova L., Lefevere J., Bedel L., Guilet R., Marty P. Efficient CO2 methanation over Ni/Al2O3 coated structured catalysts. Catal. Today. 2016;273:234–243. doi: 10.1016/j.cattod.2016.04.019. DOI
Usman M., Podila S., Al-Zahrani A.A., Alamoudi M.A. CO2 methanation over Ni/SiO2–Al2O3 catalysts: Effect of Ba, La, and Ce addition. RSC Adv. 2025;15:10958–10969. doi: 10.1039/D4RA08895F. PubMed DOI PMC
Nobakht A.R., Rezaei M., Alavi S.M., Akbari E., Varbar M., Hafezi-Bakhtiari J. CO2 methanation over NiO catalysts supported on CaO-Al2O3: Effect of CaO: Al2O3 molar ratio and nickel loading. Int. J. Hydrogen Energy. 2023;48:38664–38675. doi: 10.1016/j.ijhydene.2023.06.172. DOI
Li Z.H., Zhao T.T., Zhang L.J. Promotion effect of additive Fe on Al2O3 supported Ni catalyst for CO2 methanation. Appl. Organomet. Chem. 2018;32:e4328. doi: 10.1002/aoc.4328. DOI