• This record comes from PubMed

The Solvothermal Method: An Efficient Tool for the Preparation of Ni-Based Catalysts with High Activity in CO2 Methanation

. 2025 Sep 06 ; 15 (17) : . [epub] 20250906

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
CZ.02.1.01/0.0/0.0/17_048/0007323 Ministry of Education Youth and Sports
LM2023066 Ministry of Education Youth and Sports
24-14097L Czech Science Foundation
IGA_Prf_2025_024 Palacký University Olomouc

Nickel and nickel oxide are widely used as heterogeneous catalysts in various processes involving the hydrogenation or reduction of organic compounds, and also as excellent methanation catalysts in the hydrogenation of CO2. As heterogeneous catalysis is a surface-dependent process, nickel compounds in the form of microparticles (MPs), and particularly nanoparticles (NPs), improve the catalytic activity of Ni-based catalysts due to their high specific surface area. Solvothermal synthesis, which has so far been neglected for the synthesis of Ni-based methanation catalysts, was used in this study to synthesize nickel and nickel oxide MPs and NPs with a narrow size distribution. Solvothermal synthesis allows for the control of both the chemical composition of the resulting Ni catalysts and their physical structure by simply changing the reaction conditions (solvent, temperature, or concentration of reactants). Only non-toxic substances were used for synthesis in this study, meaning that the whole synthesis process can be described as environmentally friendly. Solvothermally prepared Ni compounds were subsequently transformed into nickel oxide by means of high-temperature decomposition, and all of the prepared Ni-based compounds were tested as catalysts for CO2 methanation. The best catalysts prepared in this study exhibited a CO2 conversion rate of nearly 95% and a selectivity for methane close to 100%, which represent thermodynamic limits for this reaction at the used temperature. These results are commonly achieved with much more complex catalytic composites containing precious metals, while here we worked with pure nickel and its oxides, in the form of micro- or nanoparticles, only.

See more in PubMed

Zaiman N.F.H.N., Shaari N. Review on flower-like structure nickel-based catalyst in fuel cell application. J. Ind. Eng. Chem. 2023;119:1–76. doi: 10.1016/j.jiec.2022.11.048. DOI

Lycourghiotis S., Kordouli E., Bourikas K., Kordulis C. The role of promoters in metallic nickel catalysts used for green diesel production: A critical review. Fuel Process. Technol. 2023;244:107690. doi: 10.1016/j.fuproc.2023.107690. DOI

Ghatak A., Das M. The Recent Progress on Supported and Recyclable Nickel Catalysts towards Organic Transformations: A Review. ChemistrySelect. 2021;6:3656–3682. doi: 10.1002/slct.202100727. DOI

Wang R., Zhang M., Zhang J., Yang J.H. Supported Nickel-based Catalysts for Heterogeneous Hydrogenation of Aromatics. ChemistrySelect. 2023;8:e202302787. doi: 10.1002/slct.202302787. DOI

Shi D.C., Wojcieszak R., Paul S., Marceau E. Ni Promotion by Fe: What Benefits for Catalytic Hydrogenation? Catalysts. 2019;9:451. doi: 10.3390/catal9050451. DOI

Lieber E., Morritz F.L. The Uses of Raney Nickel. Adv. Catal. 1953;5:417–455. doi: 10.1016/S0360-0564(08)60647-1. DOI

Sun Z.H., Zhang Z.H., Yuan T.Q., Ren X.H., Rong Z.M. Raney Ni as a Versatile Catalyst for Biomass Conversion. ACS Catal. 2021;11:10508–10536. doi: 10.1021/acscatal.1c02433. DOI

Bonomo M., Dini D., Decker F. Electrochemical and Photoelectrochemical Properties of Nickel Oxide (NiO) with Nanostructured Morphology for Photoconversion Applications. Front. Chem. 2018;6:601. doi: 10.3389/fchem.2018.00601. PubMed DOI PMC

Singh H., Rai A., Yadav R., Sinha A.K. Glucose hydrogenation to sorbitol over unsupported mesoporous Ni/NiO catalyst. Mol. Catal. 2018;451:186–191. doi: 10.1016/j.mcat.2018.01.010. DOI

Liu L.D., Liu Q., Wang Y., Huang J., Wang W.J., Duan L., Yang X., Yu X.Y., Han X., Liu N. Nonradical activation of peroxydisulfate promoted by oxygen vacancy-laden NiO for catalytic phenol oxidative polymerization. Appl. Catal. B-Environ. 2019;254:166–173. doi: 10.1016/j.apcatb.2019.04.094. DOI

Gong S.Y., Wang A.Q., Wang Y., Liu H.D., Han N., Chen Y.F. Heterostructured Ni/NiO Nanocatalysts for Ozone Decomposition. Acs Appl. Nano Mater. 2020;3:597–607. doi: 10.1021/acsanm.9b02143. DOI

Bikbashev A., Stryšovský T., Kajabová M., Kovářová Z., Prucek R., Panáček A., Kašlík J., Fodor T., Cserháti C., Erdélyi Z., et al. NiO Nano- and Microparticles Prepared by Solvothermal Method—Amazing Catalysts for CO2 Methanation. Molecules. 2024;29:4838. doi: 10.3390/molecules29204838. PubMed DOI PMC

Zhu Z., Zhang Y., Liu H., Wei N. Synthesis of original spherical α-Ni(OH)2 architectures by microwave-assisted hydrothermal method and their in situ thermal conversion to NiO. Superlattices Microstruct. 2012;51:232–238. doi: 10.1016/j.spmi.2011.11.014. DOI

Morrow G.W. Encyclopedia of Reagents for Organic Synthesis. John Wiley & Sons; Hoboken, NJ, USA: 2001. Nickel(II) Peroxide. DOI

Khalaji A.D., Grivani G., Izadi S., Ebadi M. Facile synthesis of Ni/NiO nanocomposites via thermal decomposition. J. Nanoanalysis. 2018;5:115–120. doi: 10.22034/jna.2018.541868. DOI

Zhao B., Yang Y., Bao J.H., Chen H.L. Preparation of NiO nanoparticles via thermal decomposition of nickel acetate coated by CDs. Chin. J. Inorg. Chem. 2006;22:952–956.

Numan A., Duraisamy N., Omar F.S., Gopi D., Ramesh K., Ramesh S. Sonochemical synthesis of nanostructured nickel hydroxide as an electrode material for improved electrochemical energy storage application. Prog. Nat. Sci.-Mater. Int. 2017;27:416–423. doi: 10.1016/j.pnsc.2017.06.003. DOI

Ata S., Tabassum A., Din M.I., Fatima M., Ghafoor S., Islam A., Ahad A., Bhatti M.A. Novel Sonochemical Single Step Fabrication of NiO Nanoparticles. Dig. J. Nanomater. Biostruct. 2016;11:65–80.

Ali M., Remalli N., Gedela V., Padya B., Jain P.K., Al-Fatesh A., Rana U.A., Srikanth V.V.S.S. Ni nanoparticles prepared by simple chemical method for the synthesis of Ni/NiO-multi-layered graphene by chemical vapor deposition. Solid State Sci. 2017;64:34–40. doi: 10.1016/j.solidstatesciences.2016.12.007. DOI

Chandrakala M., Bharath S.R., Maiyalagan T., Arockiasamy S. Synthesis, crystal structure and vapour pressure studies of novel nickel complex as precursor for NiO coating by metalorganic chemical vapour deposition technique. Mater. Chem. Phys. 2017;201:344–353. doi: 10.1016/j.matchemphys.2017.08.056. DOI

Singh Y., Sodhi R.S., Singh P.P., Kaushal S. Biosynthesis of NiO nanoparticles using Spirogyra sp. cell-free extract and their potential biological applications. Mater. Adv. 2022;3:4991–5000. doi: 10.1039/D2MA00114D. DOI

Uddin S., Bin Safdar L., Anwar S., Iqbal J., Laila S., Abbasi B.A., Saif M.S., Ali M., Rehman A., Basit A., et al. Green Synthesis of Nickel Oxide Nanoparticles from Berberis balochistanica Stem for Investigating Bioactivities. Molecules. 2021;26:1548. doi: 10.3390/molecules26061548. PubMed DOI PMC

Ningsih S.K.W. Synthesis and Characterization of NiO Nanopowder by Sol-Gel Process; Proceedings of the 5th International Conference on Mathematics and Natural Sciences; Bandung, Indonesia. 2–3 November 2014; DOI

Zorkipli N.N.M., Kaus N.H.M., Mohamad A.A. Synthesis of NiO Nanoparticles Through Sol-gel Method; Proceedings of the 5th International Conference on Recent Advances in Materials, Minerals and Environment (RAMM) & 2nd International Postgraduate Conference on Materials, Mineral and Polymer (MAMIP); Penang, Malaysia. 4–5 August 2015; pp. 626–631. DOI

Chen T., Yang Y., Zhao W.Y., Pan D.Q., Zhu C.T., Lin F.Y., Guo X.Y. Solvothermal Preparation and Characterization of Nano-nickel Oxide. ACTA Chim. Sin. 2019;77:447–454. doi: 10.6023/A19010033. DOI

Xu J., Wang M.R., Liu Y.Y., Li J., Cui H.T. One-pot solvothermal synthesis of size-controlled NiO nanoparticles. Adv. Powder Technol. 2019;30:861–868. doi: 10.1016/j.apt.2019.01.016. DOI

Poimenidis I.A., Lykaki M., Moustaizis S., Loukakos P., Konsolakis M. One-step solvothermal growth of NiO nanoparticles on nickel foam as a highly efficient electrocatalyst for hydrogen evolution reaction. Mater. Chem. Phys. 2023;305:128007. doi: 10.1016/j.matchemphys.2023.128007. DOI

Zhang Q., Liu H.X., Li H.L., Liu Y., Zhang H.Y., Li T.D. Solvothermal synthesis and photocatalytic properties of NiO ultrathin nanosheets with porous structure. Appl. Surf. Sci. 2015;328:525–530. doi: 10.1016/j.apsusc.2014.12.077. DOI

Abbas S.A., Jung K.D. Preparation of mesoporous microspheres of NiO with high surface area and analysis on their pseudocapacitive behavior. Electrochim. Acta. 2016;193:145–153. doi: 10.1016/j.electacta.2016.02.054. DOI

Wang J., Pang H., Yin J., Guan L., Lu Q., Gao F. Controlled fabrication and property studies of nickel hydroxide and nickel oxide nanostructures. CrystEngComm. 2010;12:1404–1409. doi: 10.1039/B918663H. DOI

Su C., Zhang L., Han Y., Ren C., Chen X., Hu J., Zeng M., Hu N., Su Y., Zhou Z., et al. Controllable synthesis of crescent-shaped porous NiO nanoplates for conductometric ethanol gas sensors. Sens. Actuators B Chem. 2019;296:126642. doi: 10.1016/j.snb.2019.126642. DOI

Zhang Q.H., Kang J.C., Wang Y. Development of Novel Catalysts for Fischer-Tropsch Synthesis: Tuning the Product Selectivity. Chemcatchem. 2010;2:1030–1058. doi: 10.1002/cctc.201000071. DOI

Adesina A.A. Hydrocarbon synthesis via Fischer-Tropsch reaction: Travails and triumphs. Appl. Catal. A-Gen. 1996;138:345–367. doi: 10.1016/0926-860X(95)00307-X. DOI

Ghaib K., Nitz K., Ben-Fares F.Z. Chemical Methanation of CO2: A Review. ChemBioEng Rev. 2016;3:266–275. doi: 10.1002/cben.201600022. DOI

Lee W.J., Li C.E., Prajitno H., Yoo J., Patel J., Yang Y.X., Lim S. Recent trend in thermal catalytic low temperature CO2 methanation: A critical review. Catalysis. 2021;368:2–19. doi: 10.1016/j.cattod.2020.02.017. DOI

Molinet-Chinaglia C., Shafiq S., Serp P. Low Temperature Sabatier CO2 Methanation. Chemcatchem. 2024;16:e202401213. doi: 10.1002/cctc.202401213. DOI

Medina O.E., Amell A.A., López D., Santamaría A. Comprehensive review of nickel-based catalysts advancements for CO2 methanation. Renew. Sustain. Energy Rev. 2024;207:114926. doi: 10.1016/j.rser.2024.114926. DOI

Ridzuan N.D.M., Shaharun M.S., Anawar M.A., Ud-Din I. Ni-Based Catalyst for Carbon Dioxide Methanation: A Review on Performance and Progress. Catalysts. 2022;12:469. doi: 10.3390/catal12050469. DOI

Wang Z.H., Wang L., Cui Y.K., Xing Y., Su W. Research on nickel-based catalysts for carbon dioxide methanation combined with literature measurement. J. CO2 Util. 2022;63:102117. doi: 10.1016/j.jcou.2022.102117. DOI

Deng H., Chen Z.Q., Chen Y.Z., Mei J., Xu W.J., Wang L.S., Peng D.L. Nickel submicron particles synthesized via solvothermal approach in the presence of organic bases: Formation mechanism and magnetic properties. Colloids Surf. A Physicochem. Eng. Asp. 2023;661:130971. doi: 10.1016/j.colsurfa.2023.130971. DOI

Jaji N.D., Othman M.B.H., Lee H.L., Hussin M.H., Hui D. One-pot solvothermal synthesis and characterization of highly stable nickel nanoparticles. Nanotechnol. Rev. 2021;10:318–329. doi: 10.1515/ntrev-2021-0019. DOI

Guo H., Pu B.X., Chen H.Y., Yang J., Zhou Y.J., Yang J., Bismark B., Li H.D., Niu X.B. Surfactant-assisted solvothermal synthesis of pure nickel submicron spheres with microwave-absorbing properties. Nanoscale Res. Lett. 2016;11:352. doi: 10.1186/s11671-016-1562-y. PubMed DOI PMC

Shirley D.A. High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B. 1972;5:4709–4714. doi: 10.1103/PhysRevB.5.4709. DOI

Casa Software Ltd. CasaXPS: Processing Software for XPS, AES, SIMS. [(accessed on 4 January 2025)]. Available online: http://www.casaxps.com/

Scofield J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 1976;8:129–137. doi: 10.1016/0368-2048(76)80015-1. DOI

Zheng X., Li B., Huang R., Jiang W., Shen L., Lei G., Wang S., Zhan Y., Jiang L. Asymmetric Oxygen Vacancy-Promoted Synthesis of Aminoarenes from Nitroarenes Using Waste H2S as a “Hydrogen Donor”. ACS Catal. 2024;14:10245–10259. doi: 10.1021/acscatal.4c02478. DOI

Zheng X., Huang R., Li B., Jiang W., Shen L., Lei G., Wang S., Zhan Y., Wang S., Jiang L. Oxygen vacancies-promoted removal of COS via catalytic hydrolysis over CuTiO2-δ nanoflowers. Chem. Eng. J. 2024;492:152322. doi: 10.1016/j.cej.2024.152322. DOI

Dai J., Zhu Y., Tahini H.A., Lin Q., Chen Y., Guan D., Zhou C., Hu Z., Lin H.J., Chan T.S., et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020;11:5657. doi: 10.1038/s41467-020-19433-1. PubMed DOI PMC

Schmider D., Maier L., Deutschmann O. Reaction Kinetics of CO and CO2 Methanation over Nickel. Kinet. Catal. React. Eng. 2021;60:5792–5805. doi: 10.1021/acs.iecr.1c00389. DOI

Zhu J., Cannizzaro F., Liu L., Zhang H., Kosinov N., Filot I.A., Rabeah J., Brückner A., Hensen E.J. Ni–In Synergy in CO2 Hydrogenation to Methanol. ACS Catal. 2021;11:11371–11384. doi: 10.1021/acscatal.1c03170. PubMed DOI PMC

Tangstad E., Andersen A., Myhrvold E.M., Myrstad T. Catalytic behaviour of nickel and iron metal contaminants of an FCC catalyst after oxidative and reductive thermal treatments. Appl. Catal. A Gen. 2008;346:194–199. doi: 10.1016/j.apcata.2008.05.022. DOI

Yarbaş T., Ayas N. A detailed thermodynamic analysis of CO2 hydrogenation to produce methane at low pressure. Int. J. Hydrogen Energy. 2024;49:1134–1144. doi: 10.1016/j.ijhydene.2023.06.223. DOI

Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57. doi: 10.1016/j.ssc.2007.03.052. DOI

Danaci S., Protasova L., Lefevere J., Bedel L., Guilet R., Marty P. Efficient CO2 methanation over Ni/Al2O3 coated structured catalysts. Catal. Today. 2016;273:234–243. doi: 10.1016/j.cattod.2016.04.019. DOI

Usman M., Podila S., Al-Zahrani A.A., Alamoudi M.A. CO2 methanation over Ni/SiO2–Al2O3 catalysts: Effect of Ba, La, and Ce addition. RSC Adv. 2025;15:10958–10969. doi: 10.1039/D4RA08895F. PubMed DOI PMC

Nobakht A.R., Rezaei M., Alavi S.M., Akbari E., Varbar M., Hafezi-Bakhtiari J. CO2 methanation over NiO catalysts supported on CaO-Al2O3: Effect of CaO: Al2O3 molar ratio and nickel loading. Int. J. Hydrogen Energy. 2023;48:38664–38675. doi: 10.1016/j.ijhydene.2023.06.172. DOI

Li Z.H., Zhao T.T., Zhang L.J. Promotion effect of additive Fe on Al2O3 supported Ni catalyst for CO2 methanation. Appl. Organomet. Chem. 2018;32:e4328. doi: 10.1002/aoc.4328. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...