Effect of Waste Micro-Particles on Metalworking Fluid Efficiency and Biodegradation During the Cutting Process
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
without number
This research was funded by the Institutional Endowment for the Long Term Conceptual De-velopment of Research Institutes, as provided by the Ministry of Education, Youth and Sports of the Czech Republic.
PubMed
40942414
PubMed Central
PMC12429645
DOI
10.3390/ma18173988
PII: ma18173988
Knihovny.cz E-zdroje
- Klíčová slova
- Pseudomonas aeruginosa, contamination, cutting, decontamination, filtration, metalworking fluid (MWFs), micro particles, microorganisms, ozonation,
- Publikační typ
- časopisecké články MeSH
This study investigates contaminants in metalworking fluids (MWFs) from an industrial band saw, focusing on microparticle classification and microbial quantification linked to fluid degradation. Most particles were under 50 µm, primarily aluminum and iron oxides from tool wear; oxygen- and sulfur-containing particles suggested corrosion. Microbiological analysis showed high contamination, with culturable microorganisms exceeding 1000 CFU/mL. A pathogenic strain associated with biodeterioration was identified, underscoring the need for microbial control. Filtration and ozonation have been used as decontamination methods to improve the purity and biological stability of the process fluid. Filtration enabled selective removal of metallic microparticles. Among six nanofiber filters, the Berry filter achieved the highest efficiency (70.8%) for particles ≥ 7.3 µm, while other filters were faster but less efficient. Ozonation proved highly effective for microbiological decontamination, reducing viable microorganisms by over 95%, improving visual clarity, and lowering pH from 9 to 8 while remaining within operational limits. Unlike filtration, ozonation significantly reduced microbial load. The combination of both methods is proposed as a sustainable strategy for maintaining process fluid quality under industrial conditions. These findings support integrated decontamination approaches to extend fluid life, reduce fresh MWF consumption and waste, and enhance workplace hygiene and safety in machining operations.
Zobrazit více v PubMed
Osama M., Singh A., Walvekar R., Khalid M., Gupta T.C.S.M., Yin W.W. Recent developments and performance review of metal working fluids. Tribol. Inter. 2017;114:389–401. doi: 10.1016/j.triboint.2017.04.050. DOI
De Chiffre L., Belluco W. Investigations of cutting fluid performance using different machining operations. Tribol. Lubr. Technol. 2002;58:22.
Yan P., Rong Y., Wang G. The effect of cutting fluids applied in metal cutting process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016;230:19–37. doi: 10.1177/0954405415590993. DOI
Leksycki K., Kaczmarek-Pawelska A., Ochał K., Gradzik A., Pimenov D.Y., Giasin K., Chuchala D., Wojciechowski S. Corrosion resistance and surface bioactivity of Ti6Al4V alloy after finish turning under ecological cutting conditions. Materials. 2021;14:6917. doi: 10.3390/ma14226917. PubMed DOI PMC
Brinksmeier E., Meyer D., Huesmann-Cordes A.G., Herrmann C. Metalworking fluids—Mechanisms and performance. CIRP Annals Manuf. Technol. 2015;64:605–628. doi: 10.1016/j.cirp.2015.05.003. DOI
Wang Y., Ren Y., Yan P., Li S., Dai Z., Jiao L., Zhao B., Pang S., Wang X. The Effect of Cutting Fluid on Machined Surface Integrity of Ultra-High-Strength Steel 45CrNiMoVA. Materials. 2023;16:3331. doi: 10.3390/ma16093331. PubMed DOI PMC
Chen S., Yan P., Zhu J., Wang Y., Zhao W., Jiao L., Wang X. Effect of cutting fluid on machined surface integrity and corrosion property of nickel based superalloy. Materials. 2023;16:843. doi: 10.3390/ma16020843. PubMed DOI PMC
Yurtkuran H., Günay M., Rai R. A state of the art on sustainable metal working fluids in machining applications. J. Mol. and Eng. Mater. 2024;12:2440013. doi: 10.1142/S2251237324400136. DOI
Evans R. Metalworking Fluids (MWFs) for Cutting and Grinding. Woodhead Publishing; Sawston, UK: 2012. Selection and testing of metalworking fluids; pp. 23–78.
Hiran Gabriel D.J., Parthiban M., Kantharaj I., Beemkumar N. A review on sustainable alternatives for conventional cutting fluid applications for improved machinability. Mach. Sci. Technol. 2023;27:157–207. doi: 10.1080/10910344.2023.2194966. DOI
Cheng C., Phipps D., Alkhaddar R.M. Treatment of spent metalworking fluids. Water Res. 2005;39:4051–4063. doi: 10.1016/j.watres.2005.07.012. PubMed DOI
Tang L., Zhang Y., Li C., Zhou Z., Nie X., Chen Y., Cao H., Liu B., Zhang N., Said Z., et al. Biological stability of water-based cutting fluids: Progress and application. Chin. J. Mech. Eng. 2022;35:3. doi: 10.1186/s10033-021-00667-z. DOI
Passman F.J., Küenzi P. Microbiology in water-miscible metalworking fluids. Tribol. Trans. 2020;63:1147–1171. doi: 10.1080/10402004.2020.1764684. DOI
Trafny E.L. Microorganisms in metalworking fluids: Current issues in research and management. Int. J. Occup. Med. Environ. Health. 2013;26:4–15. doi: 10.2478/s13382-013-0075-5. PubMed DOI
Gordon T. Metalworking fluid—The toxicity of a complex mixture. J. Toxicol. Env. Health Part A. 2004;67:209–219. doi: 10.1080/15287390490266864. PubMed DOI
Rabenstein A., Koch T., Remesch M., Brinksmeier E., Kuever J. Microbial degradation of water miscible metal working fluids. Int. Biodeter. Biodegr. 2009;63:1023–1029. doi: 10.1016/j.ibiod.2009.07.005. DOI
Saha R., Donofrio R.S. The microbiology of metalworking fluids. Appl. Microbiol. Biotechnol. 2012;94:1119–1130. doi: 10.1007/s00253-012-4055-7. PubMed DOI
Koch T., Passman F., Rabenstein A. Comparative study of microbiological monitoring of water-miscible metalworking fluids. Int. Biodeter. Biodegr. 2015;98:19–25. doi: 10.1016/j.ibiod.2014.11.015. DOI
Elansky S.N., Chudinova E.M., Elansky A.S., Kah M.O., Sandzhieva D.A., Mukabenova B.A., Dedov A.G. Microorganisms in spent water-miscible metalworking fluids as a resource of strains for their disposal. J. Clean. Prod. 2022;350:131438. doi: 10.1016/j.jclepro.2022.131438. DOI
Beekhuis B. Influence of solid contaminants in metal working fluids on the grinding process. Adv. Mater. Res. 2013;769:61–68. doi: 10.4028/www.scientific.net/AMR.769.61. DOI
Wu X., Li C., Zhou Z., Nie X., Chen Y., Zhang Y., Cao H., Liu B., Zhang N., Said Z., et al. Circulating purification of cutting fluid: An overview. Int. J. Adv. Manuf. Technol. 2021;117:2565–2600. doi: 10.1007/s00170-021-07854-1. PubMed DOI PMC
Deshpande V., Jyothi P.N. A review on sustainable eco-friendly cutting fluids. JOSEM. 2022;1:306–320. doi: 10.3126/josem.v1i2.45383. DOI
Kumar P., Jain A.K., Chaurasiya P.K., Tiwari D., Gopalan A., Arockia Dhanraj J., Muthiya Solomon J., Sivakumar A., Velmurugan K., Fefeh Rushman J. Sustainable Machining Using Eco-Friendly Cutting Fluids: A Review. Adv. Mater. Sci. Eng. 2022;2022:5284471. doi: 10.1155/2022/5284471. DOI
Afonso I.S., Nobrega G., Lima R., Gomes J.R., Ribeiro J.E. Conventional and recent advances of vegetable oils as metalworking fluids (MWFs): A review. Lubricants. 2023;11:160. doi: 10.3390/lubricants11040160. DOI
Khan M.A.A., Hussain M., Lodhi S.K., Zazoum B., Asad M., Afzal A. Green metalworking fluids for sustainable machining operations and other sustainable systems: A review. Metals. 2022;12:1466. doi: 10.3390/met12091466. DOI
Lee C.M., Choi Y.H., Ha J.H., Woo W.S. Eco-friendly technology for recycling of cutting fluids and metal chips: A review. Int. J. Precis. Eng. Man.-GT. 2017;4:457–468. doi: 10.1007/s40684-017-0051-9. DOI
Nune M.M.R., Chaganti P.K. Development, characterization, and evaluation of novel eco-friendly metal working fluid. Measurement. 2019;137:401–416. doi: 10.1016/j.measurement.2019.01.066. DOI
Jyothish P., Maurya U., Vasu V. Sustainable Materials and Manufacturing Technologies. CRC Press; Boca Raton, FL, USA: 2023. Advancements in metalworking fluid for sustainable manufacturing; pp. 58–81.
Sułek M.W., Bąk-Sowińska A., Przepiórka J. Ecological cutting fluids. Materials. 2020;13:5812. doi: 10.3390/ma13245812. PubMed DOI PMC
Junior A.S.A., Cangue F.J.R., Vaughan L.L.T., de Sousa J.A.G. Assessing the efficiency of environmentally sustainable cutting fluids in industrial machining applications. J. Eng. Exact Sci. 2025;11:21563. doi: 10.18540/jcecvl11iss1pp21563. DOI
Yuan S., Xu Q., Dai B., Li Y., Wang P. Research on High-Precision and High-Speed Filtration Methods for Synthetic Cutting Fluid. J. Phys. Conf. Ser. 2025;2955:012037. doi: 10.1088/1742-6596/2955/1/012037. DOI
Köker B., Cebeci M.S. Treatment of Waste Metalworking Fluids by Coagulation and Cross-Flow Membrane Filtration. Environ. Eng. Manag. J. (EEMJ) 2023;22:969–975. doi: 10.30638/eemj.2023.078. DOI
Bae J.H., Hwang I.G., Jeon S.D. A study on laboratory treatment of metalworking wastewater using ultrafiltration membrane system and its field application. Korean Chem. Eng. Res. 2005;43:487–494.
Hilal N., Busca G., Hankins N., Mohammad A.W. The use of ultrafiltration and nanofiltration membranes in the treatment of metal-working fluids. Desalination. 2004;167:227–238. doi: 10.1016/j.desal.2004.06.132. DOI
Saha R., Donofrio R.S., Bagley S.T. Determination of the effectiveness of UV radiation as a means of disinfection of metalworking fluids. Ann. Microbiol. 2014;64:831–838. doi: 10.1007/s13213-013-0722-x. DOI
Bianchi E.C., Aguiar P.R., Speranza de Arruda O., Amaral Piubeli F. Growth control of microbial in miscible cutting fluids using ultraviolet radiation. Lubricants. 2014;2:124–136. doi: 10.3390/lubricants2030124. DOI
Gerulová K., Buranská E., Tatarka O., Szabova Z. Preliminary study of ozone utilization in elimination of bacterial contamination in metalworking fluids. Key Eng. Mater. 2014;581:143–147. doi: 10.4028/www.scientific.net/KEM.581.143. DOI
Gerulova K., Tatarka O., Stefko T., Szabova Z., Fiala J. Effect of ozone application to microbial contaminated samples of in-use metalworking fluids. Adv. Mater. Res. 2014;884:277–282. doi: 10.4028/www.scientific.net/AMR.884-885.277. DOI
Di Martino P. Ways to improve biocides for metalworking fluid. AIMS Microbiol. 2021;7:13. doi: 10.3934/microbiol.2021002. PubMed DOI PMC
Križan Milić J., Murić A., Petrinić I., Simonič M. Recent developments in membrane treatment of spent cutting-oils: A review. Ind. Eng. Chem. Res. 2013;52:7603–7616. doi: 10.1021/ie4003552. DOI
Jagadevan S., Graham N.J., Thompson I.P. Treatment of waste metalworking fluid by a hybrid ozone-biological process. J. Hazad. Mater. 2013;244:394–402. doi: 10.1016/j.jhazmat.2012.10.071. PubMed DOI
Gerulova K., Soldán M., Szabova Z. Study of Metalworking Fluids Biodegradability Potential Enhancement by the Prior Application of Ozone. Key Eng. Mater. 2017;737:422–427. doi: 10.4028/www.scientific.net/KEM.737.422. DOI
Water Quality—Determination of Cultivable Microorganisms—Determination of the Number of Colonies by Inoculation in a Nutrient Agar Medium. International Organization for Standardization; Geneva, Switzerland: 1999.
Marchand G., Lavoie J., Racine L., Lacombe N., Cloutier Y., Belanger E., Lemelin C., Desroches J. Evaluation of bacterial contamination and control methods in soluble metalworking fluids. J. Occup. Environ. Hyg. 2010;7:358–366. doi: 10.1080/15459621003741631. PubMed DOI
Zelenko Y., Bezovska M., Kuznetsov V., Muntian A. Technological and ecological aspects of disposal of spent cutting fluids. J. Ecol. Eng. 2021;22:207–212. doi: 10.12911/22998993/134080. DOI
Ravi S., Gurusamy P., Mohanavel V. A review and assessment of effect of cutting fluids. Mater. Today Proc. 2021;37:220–222. doi: 10.1016/j.matpr.2020.05.054. DOI
Debnath S., Reddy M.M., Yi Q.S. Environmental friendly cutting fluids and cooling techniques in machining: A review. J. Clean. Prod. 2014;83:33–47. doi: 10.1016/j.jclepro.2014.07.071. DOI
Thill P.G., Ager D.K., Vojnovic B., Tesh S.J., Scott T.B., Thompson I.P. Hybrid biological, electron beam and zero-valent nano iron treatment of recalcitrant metalworking fluids. Water Res. 2016;93:214–221. doi: 10.1016/j.watres.2016.02.028. PubMed DOI
Telegdi J., Shaban A., Trif L. Review on the microbiologically influenced corrosion and the function of biofilms. Int. J. Corros. Scale Inhib. 2020;9:1–33. doi: 10.31044/1813-7016-2020-0-6-1-19. DOI
Pal M.K., Lavanya M. Microbial influenced corrosion: Understanding bioadhesion and biofilm formation. J. Bio-Tribo-Corros. 2022;8:76. doi: 10.1007/s40735-022-00677-x. DOI
Zhang Y., Wu L., Zhang X., Ge B., Qi Y. Demulsification treatment of spent metalworking fluids by metal cations: The synergistic effect and efficiency evaluation. Processes. 2021;9:1807. doi: 10.3390/pr9101807. DOI
Anand R., Raina A., Irfan Ul Haq M., Mir M.J., Gulzar O., Wani M.F. Synergism of TiO2 and graphene as nano-additives in bio-based cutting fluid—An experimental investigation. Tribol. Trans. 2021;64:350–366. doi: 10.1080/10402004.2020.1842953. DOI