Non-standardized protein background in IVF media linked to serum-derived albumin supplementation
Status Publisher Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NU22-08-00543
Ministerstvo Zdravotnictví Ceské Republiky
MUNI/A/1738/2024
Lékařská fakulta, Masarykova univerzita
PubMed
40944822
DOI
10.1007/s10815-025-03616-0
PII: 10.1007/s10815-025-03616-0
Knihovny.cz E-zdroje
- Klíčová slova
- Embryo culture, Human serum albumin, IVF media composition, Protein biomarkers, Proteomics, Spent culture medium,
- Publikační typ
- časopisecké články MeSH
PURPOSE: To explore the protein compositional variability of IVF media and identify sources of undeclared contaminants that interfere with the detection of embryo-derived signals. METHODS: Untargeted and targeted mass spectrometry techniques were used to analyze protein composition in 85 samples of used and unused monophasic IVF media across 13 production lots from two manufacturers. Samples included spent culture media (SCM) from individual embryo cultures, matched controls, and unused (blank) media. Protein-free base media was supplemented with either serum-derived or recombinant human serum albumin (HSA) to evaluate their impact on protein contamination. RESULTS: Proteomic analysis revealed that not only SCM but also unconditioned media contained over 700 undeclared human proteins, many of which are known to be implicated in key cellular pathways. No significant differences were observed between the protein profiles of embryos that reached the blastocyst stage (n = 29) and those arrested at cleavage (n = 24). Instead, protein level variation strongly correlated with media production lot, as shown by targeted analysis of 14 candidate proteins and principal component clustering of 53 SCM samples. Analysis of blank media confirmed substantial lot-to-lot heterogeneity. Supplementation experiments demonstrated that serum-derived HSA introduces undeclared, batch-variable proteins into IVF media, contributing to a non-standardized culture environment and confounding the detection of embryo-derived signals. CONCLUSION: Serum-derived HSA was identified as the primary source of protein contamination in IVF media. This overlooked protein background contributes to variability in clinical culture conditions, undermines the reproducibility of secretome analyses, and complicates the discovery of reliable biomarkers in SCM.
Department of Histology and Embryology Faculty of Medicine Masaryk University Brno Czech Republic
RECETOX Faculty of Science Masaryk University Brno Czech Republic
Reprofit International Clinic of Reproductive Medicine and Gynecology Brno Czech Republic
Zobrazit více v PubMed
ASRM, ESHRE SIG Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26(6):1270–83. https://doi.org/10.1093/humrep/der037 . DOI
De los Santos MJ, Apter S, Coticchio G, et al. Revised guidelines for good practice in IVF laboratories (2015). Hum Reprod. 2016;31(4):685–6. https://doi.org/10.1093/humrep/dew016
Coticchio G, Ahlström A, Arroyo G, et al. The Istanbul consensus update: a revised ESHRE/ALPHA consensus on oocyte and embryo static and dynamic morphological assessment†,‡. Hum Reprod. 2025;40(6):989–1035. https://doi.org/10.1093/humrep/deaf021 . PubMed DOI PMC
Kirillova A, Lysenkov S, Farmakovskaya M, et al. Should we transfer poor quality embryos? Fertil Res Pract. 2020;6: 2. https://doi.org/10.1186/s40738-020-00072-5 . PubMed DOI PMC
Zou H, Kemper JM, Hammond ER, et al. Blastocyst quality and reproductive and perinatal outcomes: a multinational multicentre observational study. Hum Reprod. 2023;38(12):2391–9. https://doi.org/10.1093/humrep/dead212 . PubMed DOI PMC
Apter S, Ebner T, Freour T, et al. Good practice recommendations for the use of time-lapse technology. Hum Reprod Open. 2020;2020(2):hoaa008. https://doi.org/10.1093/hropen/hoaa008
Kaser DJ, Racowsky C. Clinical outcomes following selection of human preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod Update. 2014;20(5):617–31. https://doi.org/10.1093/humupd/dmu023 . PubMed DOI
Basile N, Vime P, Florensa M, et al. The use of morphokinetics as a predictor of implantation: a multicentric study to define and validate an algorithm for embryo selection. Hum Reprod. 2015;30(2):276–83. https://doi.org/10.1093/humrep/deu331 . PubMed DOI
Reignier A, Lammers J, Barriere P, Freour T. Can time-lapse parameters predict embryo ploidy? Syst Rev Reprod Biomed Online. 2018;36(4):380–7. https://doi.org/10.1016/j.rbmo.2018.01.001 . DOI
Kasaven LS, Marcus D, Theodorou E, et al. Systematic review and meta-analysis: does pre-implantation genetic testing for aneuploidy at the blastocyst stage improve live birth rate? J Assist Reprod Genet. 2023;40(10):2297–316. https://doi.org/10.1007/s10815-023-02866-0 . PubMed DOI PMC
Dahdouh EM, Balayla J, García-Velasco JA. Comprehensive chromosome screening improves embryo selection: a meta-analysis. Fertil Steril. 2015;104(6):1503–12. https://doi.org/10.1016/j.fertnstert.2015.08.038 . PubMed DOI
Gleicher N, Barad DH, Patrizio P, Orvieto R. We have reached a dead end for preimplantation genetic testing for aneuploidy. Hum Reprod. 2022;37(12):2730–4. https://doi.org/10.1093/humrep/deac052 . PubMed DOI
Taskin O, Hochberg A, Tan J, et al. Preimplantation genetic testing for aneuploidy. Int J Fertil Steril. 2024;18(3):185–194. https://doi.org/10.22074/ijfs.2023.1996379.1450
Lundin K, Bentzen JG, Bozdag G, et al. Good practice recommendations on add-ons in reproductive medicine†. Hum Reprod. 2023;38(11):2062–104. https://doi.org/10.1093/humrep/dead184 . PubMed DOI PMC
Victor AR, Griffin DK, Brake AJ, et al. Assessment of aneuploidy concordance between clinical trophectoderm biopsy and blastocyst. Hum Reprod. 2019;34(1):181–92. https://doi.org/10.1093/humrep/dey327 . PubMed DOI
Bouba I, Hatzi E, Ladias P, Sakaloglou P, Kostoulas C, Georgiou I. Biological and clinical significance of mosaicism in human preimplantation embryos. J Dev Biol. 2021. https://doi.org/10.3390/jdb9020018 . PubMed DOI PMC
Yang M, Rito T, Metzger J, et al. Depletion of aneuploid cells in human embryos and gastruloids. Nat Cell Biol. 2021;23(4):314–21. https://doi.org/10.1038/s41556-021-00660-7 . PubMed DOI
Del Arco Paz A, Giménez-Rodríguez C, Selntigia A, Meseguer M, Galliano D. Advancements and challenges in preimplantation genetic testing for aneuploidies: in the pathway to non-invasive techniques. Genes. 2024. https://doi.org/10.3390/genes15121613 . DOI
Van der Aa N, Zamani Esteki M, Vermeesch JR, Voet T. Preimplantation genetic diagnosis guided by single-cell genomics. Genome Med. 2013;5(8): 71. https://doi.org/10.1186/gm475 . PubMed DOI PMC
Zmuidinaite R, Sharara FI, Iles RK. Current advancements in noninvasive profiling of the embryo culture media secretome. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22052513 . PubMed DOI PMC
Rødgaard T, Heegaard PM, Callesen H. Non-invasive assessment of in-vitro embryo quality to improve transfer success. Reprod Biomed Online. 2015;31(5):585–92. https://doi.org/10.1016/j.rbmo.2015.08.003 . PubMed DOI
Krisher RL, Schoolcraft WB, Katz-Jaffe MG. Omics as a window to view embryo viability. Fertil Steril. 2015;103(2):333–41. https://doi.org/10.1016/j.fertnstert.2014.12.116 . PubMed DOI
Hernández-Vargas P, Muñoz M, Domínguez F. Identifying biomarkers for predicting successful embryo implantation: applying single to multi-OMICs to improve reproductive outcomes. Hum Reprod Update. 2020;26(2):264–301. https://doi.org/10.1093/humupd/dmz042 . PubMed DOI
Bahrami-Asl Z, Hajipour H, Rastgar Rezaei Y, et al. Cytokines in embryonic secretome as potential markers for embryo selection. Am J Reprod Immunol. 2021;85(5): e13385. https://doi.org/10.1111/aji.13385 . PubMed DOI
Kanaka V, Proikakis S, Drakakis P, Loutradis D, Tsangaris GT. Implementing a preimplantation proteomic approach to advance assisted reproduction technologies in the framework of predictive, preventive, and personalized medicine. EPMA J. 2022;13(2):237–60. https://doi.org/10.1007/s13167-022-00282-5 . PubMed DOI PMC
Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB. The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod. 2009;15(5):271–7. https://doi.org/10.1093/molehr/gap012 . PubMed DOI PMC
Cortezzi SS, Garcia JS, Ferreira CR, et al. Secretome of the preimplantation human embryo by bottom-up label-free proteomics. Anal Bioanal Chem. 2011;401(4):1331–9. https://doi.org/10.1007/s00216-011-5202-1 . PubMed DOI
Mains LM, Christenson L, Yang B, Sparks AE, Mathur S, Van Voorhis BJ. Identification of apolipoprotein A1 in the human embryonic secretome. Fertil Steril. 2011;96(2):422-427.e2. https://doi.org/10.1016/j.fertnstert.2011.05.049 . PubMed DOI
Nyalwidhe J, Burch T, Bocca S, et al. The search for biomarkers of human embryo developmental potential in IVF: a comprehensive proteomic approach. Mol Hum Reprod. 2013;19(4):250–63. https://doi.org/10.1093/molehr/gas063 . PubMed DOI
Kaihola H, Yaldir FG, Bohlin T, Samir R, Hreinsson J, Åkerud H. Levels of caspase-3 and histidine-rich glycoprotein in the embryo secretome as biomarkers of good-quality day-2 embryos and high-quality blastocysts. PLoS One. 2019;14(12): e0226419. https://doi.org/10.1371/journal.pone.0226419 . PubMed DOI PMC
Vani V, Vasan SS, Adiga SK, et al. Soluble human leukocyte antigen-G is a potential embryo viability biomarker and a positive predictor of live-births in humans. Am J Reprod Immunol. 2021;86(6): e13499. https://doi.org/10.1111/aji.13499 . PubMed DOI
Radwan P, Tarnowska A, Piekarska K, et al. The impact of soluble HLA-G in IVF/ICSI embryo culture medium on implantation success. Front Immunol. 2022;13: 982518. https://doi.org/10.3389/fimmu.2022.982518 . PubMed DOI PMC
Noci I, Fuzzi B, Rizzo R, et al. Embryonic soluble HLA-G as a marker of developmental potential in embryos. Hum Reprod. 2005;20(1):138–46. https://doi.org/10.1093/humrep/deh572 . PubMed DOI
Lindgren KE, Gülen Yaldir F, Hreinsson J, et al. Differences in secretome in culture media when comparing blastocysts and arrested embryos using multiplex proximity assay. Ups J Med Sci. 2018;123(3):143–52. https://doi.org/10.1080/03009734.2018.1490830 . PubMed DOI PMC
Kapiteijn K, Koolwijk P, van der Weiden RM, et al. Human embryo-conditioned medium stimulates in vitro endometrial angiogenesis. Fertil Steril. 2006;85(Suppl 1):1232–9. https://doi.org/10.1016/j.fertnstert.2005.11.029 . PubMed DOI
Parvanov D, Nikolova D, Ganeva R, et al. Unbalanced human embryos secrete more hyperglycosylated human chorionic gonadotrophin (hCG-H) than balanced ones. J Assist Reprod Genet. 2020;37(6):1341–8. https://doi.org/10.1007/s10815-020-01776-9 . PubMed DOI PMC
Bori L, Dominguez F, Fernandez EI, et al. An artificial intelligence model based on the proteomic profile of euploid embryos and blastocyst morphology: a preliminary study. Reprod Biomed Online. 2021;42(2):340–50. https://doi.org/10.1016/j.rbmo.2020.09.031 . PubMed DOI
Hoofnagle AN, Wener MH. The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J Immunol Methods. 2009;347(1–2):3–11. https://doi.org/10.1016/j.jim.2009.06.003 . PubMed DOI PMC
Bonetti TC, Haddad DC, Domingues TS, et al. Expressed proteins and activated pathways in conditioned embryo culture media from IVF patients are diverse according to infertility factors. JBRA Assist Reprod. 2019;23(4):352–60. https://doi.org/10.5935/1518-0557.20190039 . PubMed DOI PMC
Montskó G, Zrínyi Z, Janáky T, et al. Noninvasive embryo viability assessment by quantitation of human haptoglobin alpha-1 fragment in the in vitro fertilization culture medium: an additional tool to increase success rate. Fertil Steril. 2015;103(3):687–93. https://doi.org/10.1016/j.fertnstert.2014.11.031 . PubMed DOI
Katz-Jaffe MG, McReynolds S. Embryology in the era of proteomics. Fertil Steril. 2013;99(4):1073–7. https://doi.org/10.1016/j.fertnstert.2012.12.038 . PubMed DOI
Caro CM, Trounson A. Successful fertilization, embryo development, and pregnancy in human in vitro fertilization (IVF) using a chemically defined culture medium containing no protein. J In Vitro Fert Embryo Transf. 1986;3(4):215–7. https://doi.org/10.1007/BF01132806 . PubMed DOI
Yao T, Asayama Y. Human preimplantation embryo culture media: past, present, and future. J Mammal Ova Res. 2016;33(1):17–34. https://doi.org/10.1274/jmor.33.17 .
Menezo Y, Testart J, Perrone D. Serum is not necessary in human in vitro fertilization, early embryo culture, and transfer. Fertil Steril. 1984;42(5):750–5. https://doi.org/10.1016/S0015-0282(16)48202-6 .
Meintjes M, Chantilis SJ, Ward DC, et al. A randomized controlled study of human serum albumin and serum substitute supplement as protein supplements for IVF culture and the effect on live birth rates. Hum Reprod. 2009;24(4):782–9. https://doi.org/10.1093/humrep/den396 . PubMed DOI
Morbeck DE, Paczkowski M, Fredrickson JR, et al. Composition of protein supplements used for human embryo culture. J Assist Reprod Genet. 2014;31(12):1703–11. https://doi.org/10.1007/s10815-014-0349-2 . PubMed DOI PMC
Dyrlund TF, Kirkegaard K, Poulsen ET, et al. Unconditioned commercial embryo culture media contain a large variety of non-declared proteins: a comprehensive proteomics analysis. Hum Reprod. 2014;29(11):2421–30. https://doi.org/10.1093/humrep/deu220 . PubMed DOI
Wiśniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62. https://doi.org/10.1038/nmeth.1322 . PubMed DOI
Stejskal K, Potěšil D, Zdráhal Z. Suppression of peptide sample losses in autosampler vials. J Proteome Res. 2013;12(6):3057–62. https://doi.org/10.1021/pr400183v . PubMed DOI
Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods. 2020;17(1):41–4. https://doi.org/10.1038/s41592-019-0638-x . PubMed DOI
Perez-Riverol Y, Bandla C, Kundu DJ, et al. The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 2025;53(D1):D543–53. https://doi.org/10.1093/nar/gkae1011 . PubMed DOI
Ashburner M, Ball CA, Blake JA, The Gene Ontology Consortium, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9. https://doi.org/10.1038/75556 . PubMed DOI PMC
Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC. A critical review of bottom-up proteomics: the good, the bad, and the future of this field. Proteomes. 2020. https://doi.org/10.3390/proteomes8030014 . PubMed DOI PMC
Karpievitch YV, Polpitiya AD, Anderson GA, Smith RD, Dabney AR. Liquid chromatography mass spectrometry-based proteomics: biological and technological aspects. Ann Appl Stat. 2010;4(4):1797–823. https://doi.org/10.1214/10-AOAS341 . PubMed DOI PMC
Chandramouli K, Qian PY. Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genom Proteom. 2009;2009. https://doi.org/10.4061/2009/239204
Gay M, Carrascal M, Gorga M, Parés A, Abian J. Characterization of peptides and proteins in commercial HSA solutions. Proteomics. 2010;10(2):172–81. https://doi.org/10.1002/pmic.200900182 . PubMed DOI
Tarahomi M, Vaz FM, van Straalen JP, et al. The composition of human preimplantation embryo culture media and their stability during storage and culture. Hum Reprod. 2019;34(8):1450–61. https://doi.org/10.1093/humrep/dez102 . PubMed DOI
Sonnen KF, Janda CY. Signalling dynamics in embryonic development. Biochem J. 2021;478(23):4045–70. https://doi.org/10.1042/BCJ20210043 . PubMed DOI
Zander-Fox D, Villarosa L, McPherson NO. Albumin used in human IVF contain different levels of lipids and modify embryo and fetal growth in a mouse model. J Assist Reprod Genet. 2021;38(9):2371–81. https://doi.org/10.1007/s10815-021-02255-5 . PubMed DOI PMC
Kleijkers SH, Mantikou E, Slappendel E, et al. Influence of embryo culture medium (G5 and HTF) on pregnancy and perinatal outcome after IVF: a multicenter RCT. Hum Reprod. 2016;31(10):2219–30. https://doi.org/10.1093/humrep/dew156 . PubMed DOI
Zhu J, Li M, Chen L, Liu P, Qiao J. The protein source in embryo culture media influences birthweight: a comparative study between G1 v5 and G1-PLUS v5. Hum Reprod. 2014;29(7):1387–92. https://doi.org/10.1093/humrep/deu103 . PubMed DOI
Morbeck DE, Krisher RL, Herrick JR, Baumann NA, Matern D, Moyer T. Composition of commercial media used for human embryo culture. Fertil Steril. 2014;102(3):759-766.e9. https://doi.org/10.1016/j.fertnstert.2014.05.043 . PubMed DOI
Morbeck DE, Baumann NA, Oglesbee D. Composition of single-step media used for human embryo culture. Fertil Steril. 2017;107(4):1055-1060.e1. https://doi.org/10.1016/j.fertnstert.2017.01.007 . PubMed DOI
Zagers MS, Laverde M, Goddijn M, et al. The composition of commercially available human embryo culture media. Hum Reprod. 2025;40(1):30–40. https://doi.org/10.1093/humrep/deae248 . PubMed DOI
Bungum M, Humaidan P, Bungum L. Recombinant human albumin as protein source in culture media used for IVF: a prospective randomized study. Reprod Biomed Online. 2002;4(3):233–6. https://doi.org/10.1016/s1472-6483(10)61811-1 . PubMed DOI
Schramm RD, Bavister BD. Development of in-vitro-fertilized primate embryos into blastocysts in a chemically defined, protein-free culture medium. Hum Reprod. 1996;11(8):1690–7. https://doi.org/10.1093/oxfordjournals.humrep.a019471 . PubMed DOI
Li J, Foote RH, Liu Z, Giles JR. Development of rabbit zygotes into blastocysts in defined protein-free medium and offspring born following culture and embryo transfer. Theriogenology. 1997;47(5):1103–13. https://doi.org/10.1016/s0093-691x(97)00067-8 . PubMed DOI
Duque P, Hidalgo CO, Gómez E, Pintado B, Facal N, Díez C. Macromolecular source as dependent on osmotic pressure and water source: effects on bovine in vitro embryo development and quality. Reprod Nutr Dev. 2003;43(6):487–96. https://doi.org/10.1051/rnd:2004007 . PubMed DOI
Spindle A. Beneficial effects of taurine on mouse zygotes developing in protein-free culture medium. Theriogenology. 1995;44(6):761–72. https://doi.org/10.1016/0093-691x(95)00275-d . PubMed DOI
Gardner DK, Lane M. Culture of viable human blastocysts in defined sequential serum-free media. Hum Reprod. 1998;13(Suppl 3):148–59. https://doi.org/10.1093/humrep/13.suppl_3.148 . PubMed DOI
Ali J, Shahata MA, Al-Natsha SD. Formulation of a protein-free medium for human assisted reproduction. Hum Reprod. 2000;15(1):145–56. https://doi.org/10.1093/humrep/15.1.145 . PubMed DOI