Rapid Activation of 3D-Printed Carbon Electrodes by Atmospheric Air Plasma: Toward Electrochemical Drug Analysis

. 2025 Sep 09 ; 10 (35) : 40435-40449. [epub] 20250823

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40949231

This study presents a rapid, environmentally friendly, and scalable activation method for 3D-printed poly-(lactic acid)/carbon black (PLA/CB) electrodes using atmospheric air plasma under ambient conditions. The goal was to optimize the plasma activation time and compare its efficiency with conventional activation techniques using N,N-dimethylformamide (DMF) and sodium hydroxide (NaOH). Surface morphology, chemical composition, wettability, and electrochemical performance were systematically evaluated through scanning electron microscopy (SEM), Raman spectroscopy, XPS, contact angle measurements, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Plasma treatment, as short as 5 s, effectively removed the PLA matrix from the electrode surface, enhanced surface roughness, hydrophilicity, and exposure of conductive carbon black particles, leading to increased electrochemical performance. Compared to chemical activation, 40 s of plasma activation yielded comparable performance with significantly shorter processing times (vs NaOH) and without hazardous solvents (such as DMF). Finally, the activated electrodes were successfully applied in the development, optimization, and validation of a novel electrochemical protocol for the determination of the antihypertensive drug amlodipine, revealing high sensitivity, a low limit of detection of 0.09 μM, precision (RSD of 6.6%), and recovery (97.1 and 105.4%) in pharmaceutical formulations. The findings demonstrate the promising potential of air plasma activation as a sustainable and efficient approach for preparing 3D-printed electrodes for analytical and sensing applications.

Zobrazit více v PubMed

Manzanares Palenzuela C. L., Novotný F., Krupička P., Sofer Z., Pumera M.. 3D-Printed Graphene/Polylactic Acid Electrodes Promise High Sensitivity in electroanalysis. Anal. Chem. 2018;90:5753–5757. doi: 10.1021/acs.analchem.8b00083. PubMed DOI

Kozior T., Kundera C.. Evaluation of the Influence of Parameters of FDM Technology on the Selected Mechanical Properties of Models. Procedia Engineering. 2017;192:463–468. doi: 10.1016/j.proeng.2017.06.080. DOI

Dudek P.. FDM 3D printing technology in manufacturing composite elements. Archives of Metallurgy and Materials. 2013;58:1415–1418. doi: 10.2478/amm-2013-0186. DOI

Ngo T. D., Kashani A., Imbalzano G., Nguyen K. T. Q., Hui D.. Recycled, Bio-Based, and Blended Composite Materials for 3D Printing Filament: Pros and ConsA Review. Compos. Part B Eng. 2018;143:172–196. doi: 10.1016/j.compositesb.2018.02.012. DOI

Rocha G. R., Ramos D. L. O., De Faria L. V., Germscheidt R. L., Dos Santos D. P., Bonacin J. A., Munoz R. A. A., Richter R. M.. Printing parameters affect the electrochemical performance of 3D-printed carbon electrodes obtained by fused deposition modeling. J. Electroanal. Chem. 2022;925:116910. doi: 10.1016/j.jelechem.2022.116910. DOI

Patel R., Jani S., Joshi A.. Review on multi-objective optimization of FDM process parameters for composite materials. International Jouirnal on Interactive Design and Manufacturing. 2023;17:2115–2125. doi: 10.1007/s12008-022-01111-9. DOI

Abdalla A., Hamzah H. H., Keattch O., Covill D., Patel B. A.. Augmentation of conductive pathways in carbon black/PLA 3D-printed electrodes achieved through varying printing parameters. Electrochim. Acta. 2020;354:136618. doi: 10.1016/j.electacta.2020.136618. DOI

Dammer, L. ; Carus, M. ; Iffland, K. ; Piotrowski, S. ; Sarmento, L. ; Chinthapalli, R. ; Raschka, A. . Study on current situation and trends of the bio-based industries in Europe; Renewable Carbon; 2017.

Belgacem, M. N. ; Gandini, A. . Monomers, Polymers and Composites from Renewable Resources, 1st edition; Elsevier, 2008.

Garlotta D.. A Literature Review of Poly­(Lactic Acid) Journal of Polymers and the Evnvironment. 2001;9:63–84. doi: 10.1023/A:1020200822435. DOI

Avérous, L. Polylactic Acid: Synthesis, Properties and Applications. In Monomers, Polymers and Composites from Renewable Resources, 1st edition; Elsevier; 2008; pp 433–450.

Sharma A., Faber H., Khosla A., Anthopoulos T. D.. 3D printed electrochemical devices for bio-chemical sensing: A review. Materials Science and Engineering: R: Reports. 2023;156:100754. doi: 10.1016/j.mser.2023.100754. DOI

Stefano J. S., Kalinke C., Rocha R. G., Rocha D. P., Silva V. A. O. P., Bonacin J. A., Angnes L., Richter E. M., Janegitz B. C., Muñoz R. A. A.. Electrochemical (Bio)­Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Paramenters, and Post-Treatment Protocols. Anal. Chem. 2022;94:6417–6429. doi: 10.1021/acs.analchem.1c05523. PubMed DOI

Silva A. L., Salvador G. M. da S., Castro S. V. F., Carvalho N. M. F., Munoz R. A. A.. A 3D Printer Guide for the Development and Application of Electrochemical Cells and Devices. Front. Chem. 2021;9:684256. doi: 10.3389/fchem.2021.684256. PubMed DOI PMC

Bakker E., Telting-Diaz M.. Electrochemical Sensors. Anal. Chem. 2002;74:2781–2800. doi: 10.1021/ac0202278. PubMed DOI

Souza M. d. F. B.. Chemically modified electrodes applyes to electroanalysis: a brief presentation. Quim. Nova. 1997;20:191–195. doi: 10.1590/S0100-40421997000200011. DOI

Ambrosi A., Pumera M.. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016;45:2740–2755. doi: 10.1039/C5CS00714C. PubMed DOI

Stefano J. S., Kalinke C., Rocha R. G., Rocha D. P., Da Silva V. A. O. P., Bonacin J. A., Angnes L., Richter E. M., Janegitz B. C., Munoz R. A. A.. Electrochemical (Bio)­Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols. Anal. Chem. 2022;94:6417–6429. doi: 10.1021/acs.analchem.1c05523. PubMed DOI

Cruz M. A., Ye S., Kim M. J., Reyes C., Yang F., Flowers P. F., Wiley B. J.. Multigram synthesis of Cu-Ag core-shell nanowires enables the production of highly conductive polymer filament for 3D printing electronics. Part. Part. Syst. Char. 2018;35:1700385. doi: 10.1002/ppsc.201700385. DOI

Adams J. J., Duoss E. B., Malkowski T. F., Motala M. J., Ahn B. Y., Nuzzo R. G., Bernhard J. T., Lewis J. A.. Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces. Adv. Mater. 2011;23:1335–1340. doi: 10.1002/adma.201003734. PubMed DOI

Kwok S. W., Goh K. H. H., Tan Z. D., Tan S. T. M., Tjiu W. W., Soh J. Y., Glenn Ng Z. J., Chan Y. Z., Hui H. K., Goh K. E. J.. Electrically conductive filament for 3D-printed circuits and sensors. Appl. Mater. Today. 2017;9:167–175. doi: 10.1016/j.apmt.2017.07.001. DOI

Walker S. B., Lewis J. A.. Reactive silver inks for patterning high-conductivity features at mild temperatures. J. Am. Chem. Soc. 2012;134:1419–1421. doi: 10.1021/ja209267c. PubMed DOI

Tsuji H., Kawashima Y., Takikawa H., Tanaka S.. Poly­(l-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer. 2007;48:4213–4225. doi: 10.1016/j.polymer.2007.05.040. DOI

Wei X., Li D., Jiang W., Gu Z., Wang X., Zhang Z., Sun Z.. 3D Printable Graphene Composite. Sci. Rep. 2015;5:11181. doi: 10.1038/srep11181. PubMed DOI PMC

Silva V. A. O. P., Fernandes-Junior W. S., Rocha D. P., Stefano J. S., Munoz R. A. A., Bonacin J. A., Janegitz B. C.. 3D-printed reduced graphene oxide/polylactic acid electrodes: A new prototyped platform for sensing and biosensing applications. Biosens. Bioelectron. 2020;170:112684. doi: 10.1016/j.bios.2020.112684. PubMed DOI

Li Y., Xu R., Wang H., Xu W., Tian L., Huang J., Liang C., Zhang Y.. Recent Advances of Biochar-Based Electrochemical Sensors and Biosensors. Biosensors. 2022;12:377. doi: 10.3390/bios12060377. PubMed DOI PMC

Kuan C.-F., Kuan H.-C., Ma C.-C. M., Chen C.-H.. Mechanical and electrical properties of multi-wall carbon nanotube/poly­(lactic acid) composites. J. Phys. Chem. Solids. 2008;69:1395–1398. doi: 10.1016/j.jpcs.2007.10.060. DOI

Cardoso R. M., Kalinke C., Rocha R. G., dos Santos P. L., Rocha D. P., Oliveira P. R., Janegitz B. C., Bonacin J. A., Richter E. M., Munoz R. A. A.. Additive-manufactured (3D-printed) electrochemical sensors: A critical review. Anal. Chim. Acta. 2020;1118:73–91. doi: 10.1016/j.aca.2020.03.028. PubMed DOI

Kalinke C., Neumsteir N. V., Oliveira A. G., De Barros Ferraz T. V., Dos Santos P. L., Janegitz B. C., Bonacin J. A.. Comparison of activation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine. Analyst. 2020;145:1207–1218. doi: 10.1039/C9AN01926J. PubMed DOI

Kalinke C., Moscardi A. P. Z., De Oliveira P. R., Mangrich A. S., Marcolino-Junior L. H., Bergamini M. F.. Simple and low-cost sensor based on activated biochar for the stripping voltammetric detection of caffeic acid. Microchem. J. 2020;159:105380. doi: 10.1016/j.microc.2020.105380. DOI

Wirth D. M., Sheaff M. J., Waldman J. V., Symcox M. P., Whitehead H. D., Sharp J. D., Doerfler J. R., Lamar A. A., LeBlanc G.. Electrolysis Activation of Fused-Filament-Fabrication 3D-Printed Electrodes for Electrochemical and Spectroelectrochemical Analysis. Anal. Chem. 2019;91:5553–5557. doi: 10.1021/acs.analchem.9b01331. PubMed DOI

Browne M. P., Novotný F., Sofer Z., Pumera M.. 3D Printed Graphene Electrodes’ Electrochemical Activation. ACS Appl. Mater. Interfaces. 2018;10:40294–40301. doi: 10.1021/acsami.8b14701. PubMed DOI

Cardoso R. M., Mendoça D. M. H., Silva W. P., Silva M. N. T., Nossol E., Da Silva R. A. B., Richter E. M., Munoz R. A. A.. 3D Printing for electroanalysis: From multiuse electrochemical cells to sensors. Anal. Chim. Acta. 2018;1033:49–57. doi: 10.1016/j.aca.2018.06.021. PubMed DOI

Novotny F., Urbanova V., Plutnar J., Pumera M.. Preserving Fine Structure Details and Dramatically Enhancing Electron Transfer Rates in Graphene 3D-Printed Electrodes via Thermal Annealing: Toward Nitroaromatic Explosives Sensing. ACS Appl. Mater. Interfaces. 2019;11:35371–35375. doi: 10.1021/acsami.9b06683. PubMed DOI

Carvalho M. S., Rocha R. G., Nascimento A. B., Araújo D. A. G., Paixao T. R. L. C., Lopes O. F., Richter E. M., Munoz R. A. A.. Enhanced electrochemical performance of 3D-printed electrodes via blue-laser irradiation and (electro)­chemical treatment. Electrochim. Acta. 2024;506:144995. doi: 10.1016/j.electacta.2024.144995. DOI

Gusmão R., Browne M. P., Sofer Z., Pumera M.. The capacitance and electron transfer of 3D-printed graphene electrodes are dramatically influenced by the type of solvent used for pre-treatment. Electrochem. Commun. 2019;102:83–88. doi: 10.1016/j.elecom.2019.04.004. DOI

Mckeown P., Jones D.. The Chemical Recycling of PLA: A Review. Sustain. Chem. 2020;1:1–22. doi: 10.3390/suschem1010001. DOI

Redondo E., Muñoz J., Pumera M.. Green activation using reducing agents of carbon-based 3D printed electrodes: Turning good electrodes to great. Carbon. 2021;175:413–419. doi: 10.1016/j.carbon.2021.01.107. DOI

Novotný F., Urbanová V., Plutnar J., Pumera M.. Preserving Fine Structure Details and Dramatically Enhancing Electron Transfer Rates in Graphene 3D-Printed Electrodes via Thermal Annealing: Toward Nitroaromatic Explosives Sensing. Applied Materials and Interfaces. 2019;11:35371–35375. doi: 10.1021/acsami.9b06683. PubMed DOI

Dos Santos P. L., Katic V., Loureiro H. C., Dos Santos M. F., Dos Santos D. P., Formiga A. L. B., Bonacin J. A.. Enhanced performance of 3D printed graphene electrodes after electrochemical pre-treatment: Role of exposed graphene sheets. Sens. Actuators B Chem. 2019;281:837–848. doi: 10.1016/j.snb.2018.11.013. DOI

Fontana-Escartín A., Lanzalaco S., Peréz-Madrigal M. M., Bertran O., Alemán C.. Electrochemical activation for sensing of three-dimensional-printed poly­(lactic acid) using low-pressure plasma. Plasma Process. Polym. 2022;19:2200101. doi: 10.1002/ppap.202200101. DOI

Homola T., Kelar J., Černák M., Kováčik D.. High-power density surface plasma generated by diffuse coplanar surface barrier discharge. Vakuum Forshung Praxis. 2022;34:4. doi: 10.1002/vipr.202200785. DOI

Kilinc F. B., Bozaci E., Kilinc A. C., Turkoglu T.. Effect of Atmospheric Plasma Treatment on Mechanical Properties of 3D-Printed Continuous Aramid Fiber/PLA Composites. Polymers. 2025;17:397. doi: 10.3390/polym17030397. PubMed DOI PMC

De Geyter N., Morent R., Desmet T., Trentesaux M., Gengembre L., Dubruel P., Leys C., Payen E.. Plasma modification of polylactic acid in a medium pressure DBD. Surf. Coat. Technol. 2010;204:3272–3279. doi: 10.1016/j.surfcoat.2010.03.037. DOI

Luque-Agudo V., Hierro-Oliva M., Gallardo-Moreno A. M., González-Martín M. L.. Effect of plasma treatment on the surface properties of polylactic acid films. Polym. Test. 2021;96:107097. doi: 10.1016/j.polymertesting.2021.107097. DOI

Pereira J. F. S., Rocha R. G., Castro S. V. F., Joao A. F., Borges P. H. S., Rocha D. P., De Siervo A., Richter E. M., Nossol E., Gelamo R. V., Munoy R. A. A.. Reactive oxygen plasma treatment of 3D-printed carbon electrodes towars high-performance electrochemical sensors. Sens. Actuators, B. 2021;347:130651. doi: 10.1016/j.snb.2021.130651. DOI

Nasir M. Z. M., Novotný F., Alduhaish O., Pumera M.. 3D-printed electrodes for the detection of mycotoxins in food. Electrochem. Commun. 2020;115:106735. doi: 10.1016/j.elecom.2020.106735. DOI

Kalinke C., Neumsteir N. V., De Oliveira Aprecido G., De Barros Ferraz T. V., Dos Santos P. L., Janegity B. C., Bonacin J. A.. Comparison of activvation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine. Analyst. 2020;145:1207–1218. doi: 10.1039/C9AN01926J. PubMed DOI

Kwaczynski K., Szymaniec O., Bobrowska D. M., Poltorak L.. Solvent-activated 3D-printed electrodes and their electroanalytical potential. Sci. Rep. 2023;13:22797. doi: 10.1038/s41598-023-49599-9. PubMed DOI PMC

Bokobza L., Buneel J.-L., Couzi M.. Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black. Chem. Phys. Lett. 2013;590:153–159. doi: 10.1016/j.cplett.2013.10.071. DOI

Buchlová T., Hatala M., Vete3ka P., H8y A., Novák P., Mackul’ak T., Mikula M., Gemeiner P.. Screen-printed counter-electrodes based on biochar derived from wood-corn silage and titanium isopropoxide binder as a more efficient and renewable alternative to Pt-CE for dye-sensitized solar cells. Mater. Sci. Semicond. Process. 2024;171:108016. doi: 10.1016/j.mssp.2023.108016. DOI

Glowacki M. J.. Helium-assisted, solvent-free electro-activation of 3D printed conductive carbon-polylactide electrodes by pulsed laser ablation. Appl. Surf. Sci. 2021;556:149788. doi: 10.1016/j.apsusc.2021.149788. DOI

Gustus R., Wegewitz L.. Modification of polylactic acid (PLA) surfaces by argon DBD plasma jet treatment and x-ray irradiation. Appl. Surf. Sci. 2025;689:162589. doi: 10.1016/j.apsusc.2025.162589. DOI

Kalogirou C., Hooft O., Godde A.. Assessing the Time Dependence of AOPs on the Surface Properties of Polylactic Acid. J. Polym. Environ. 2022;31:345–357. doi: 10.1007/s10924-022-02608-w. DOI

Chwatal S., Zažímal F., Buršíková V., Kaindl R., Homola T.. Modification of silicon-polyurethane-based sol-gel coatings through diverse plasma technologies: investgation of impact on surface properties. New J. Chem. 2024;12:5232–5246. doi: 10.1039/D3NJ05986C. DOI

Vida J., Ilčíková M., Přibyl R.. Rapid Atmospheric Pressure Ambient Air Plasma Functionalization of Poly­(styrene) and Poly­(ethersulfone) Foils. Plasma Chem. Plasma Process. 2021;41:841–854. doi: 10.1007/s11090-021-10155-w. DOI

Silva T. A., Moraes F. C., Janegitz B. C., Fatibello-Filho O.. Electrochemical Biosensors Based on Nanostructured Carbon Black: A Review. J. Nanomater. 2017;2017:14. doi: 10.1155/2017/4571614. DOI

Cascaini de Torre L. E., Bottani E. J., Martínez-Alonso A., Cuesta A., García A. B., Tascón J. M. D.. Effects of oxygen plasma treatment on the surface of graphitized carbon black. Carbon. 1998;36:277–282. doi: 10.1016/S0008-6223(97)00180-2. DOI

Ambolikar A. S., Guin S. K., Neogy S.. An insight into the outer- and inner-sphere electrochemistry of oxygenated single-walled carbon nanohorns (o-SWCNHs) New J. Chem. 2019;43:18210–18219. doi: 10.1039/C9NJ04467A. DOI

Redondo E., Munoz J., Pumera M.. Green activation using reducing agents of carbon-based 3D printed electrodes: Turning good electrodes to great. Carbon. 2021;175:413–419. doi: 10.1016/j.carbon.2021.01.107. DOI

Browne M. P., Novotný F., Sofer Z., Pumera M.. 3D Printed Graphene Electrodes′ Electrochemical Activation. Appl. Mater. Interfaces. 2018;10:40292–40301. doi: 10.1021/acsami.8b14701. PubMed DOI

Farines M. H., Martins E. C., Baumgarten L. G., Winiarski J. P., Santana E. R., Spinelli A., Debacher N. A., Vieira I. C.. Argon non-thermal plasma jet-activated 3D-printed disposable electrochemical sensor for the determination of methyldopa. Electrochim. Acta. 2025;517:145722. doi: 10.1016/j.electacta.2025.145722. DOI

Siquera G. P., Rocha R. G., NAscimento A. B., Richter E. M., Munoz R. A. A.. Portable Atmospheric Air Plasma Jet Pen for the Surface Treatment of Three-Dimensionally (3D)-Printed Electrodes. Anal. Chem. 2024;96:15852–15858. doi: 10.1021/acs.analchem.4c02785. PubMed DOI PMC

Kozlowska K., Cieslik M., Koterwa A., Formela K., Ryl J., Niedzialkowski P.. Microwave-Induced Processing of Free-Standing 3D Printouts: An Effortless Route to High-Redox Kinetics in electroanalysis. Materials. 2024;17:2833. doi: 10.3390/ma17122833. PubMed DOI PMC

Rocha D. P., Squissato A. L., Da Silva S. M., Richter E. M., Munoz R. A. A.. Improved electrochemical detection of metals in biological samples using 3D-printed electrode: Chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochim. Acta. 2020;335:135688. doi: 10.1016/j.electacta.2020.135688. DOI

Rodrigues J. G. A., Silva T. M. N., Gomes Junior S. B., Marins A. A. L., Dos Santos G. F. S., Ferreira R. Q., Freits J. C. C.. Optimizing the Construction and Activation of 3D-Printed Electrochemical Sensors: An Experimental Design Approach for Simultaneous electroanalysis of Paracetamol and Caffeine. ACS Omega. 2025;10:1131–1143. doi: 10.1021/acsomega.4c08593. PubMed DOI PMC

Veloso W. B., Ataide V. N., Rocha D. P.. 3D-printed sensor decorated with nanomaterials by CO2 laser ablation and electrochemical treatment for non-enzymatic tyrosine detection. Microchim. Acta. 2023;190:63. doi: 10.1007/s00604-023-05648-8. PubMed DOI

Homola T., Ďurašová Z., Shekargoftar M., Souček P., Dzik P.. Optimization of TiO2Mesoporous Photoanodes Prepared by Inkjet Printing and Low-Temperature Plasma Processing. Plasma Chemistry and Plasma Processing. 2020;40:1311–1330. doi: 10.1007/s11090-020-10086-y. DOI

Šimek M., Homola T.. Plasma-assisted agriculture: history, presence, and prospects–a review. Eur. Phys. J. D. 2021;75:210. doi: 10.1140/epjd/s10053-021-00206-4. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...