Rapid Activation of 3D-Printed Carbon Electrodes by Atmospheric Air Plasma: Toward Electrochemical Drug Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40949231
PubMed Central
PMC12427132
DOI
10.1021/acsomega.5c05879
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This study presents a rapid, environmentally friendly, and scalable activation method for 3D-printed poly-(lactic acid)/carbon black (PLA/CB) electrodes using atmospheric air plasma under ambient conditions. The goal was to optimize the plasma activation time and compare its efficiency with conventional activation techniques using N,N-dimethylformamide (DMF) and sodium hydroxide (NaOH). Surface morphology, chemical composition, wettability, and electrochemical performance were systematically evaluated through scanning electron microscopy (SEM), Raman spectroscopy, XPS, contact angle measurements, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Plasma treatment, as short as 5 s, effectively removed the PLA matrix from the electrode surface, enhanced surface roughness, hydrophilicity, and exposure of conductive carbon black particles, leading to increased electrochemical performance. Compared to chemical activation, 40 s of plasma activation yielded comparable performance with significantly shorter processing times (vs NaOH) and without hazardous solvents (such as DMF). Finally, the activated electrodes were successfully applied in the development, optimization, and validation of a novel electrochemical protocol for the determination of the antihypertensive drug amlodipine, revealing high sensitivity, a low limit of detection of 0.09 μM, precision (RSD of 6.6%), and recovery (97.1 and 105.4%) in pharmaceutical formulations. The findings demonstrate the promising potential of air plasma activation as a sustainable and efficient approach for preparing 3D-printed electrodes for analytical and sensing applications.
Zobrazit více v PubMed
Manzanares Palenzuela C. L., Novotný F., Krupička P., Sofer Z., Pumera M.. 3D-Printed Graphene/Polylactic Acid Electrodes Promise High Sensitivity in electroanalysis. Anal. Chem. 2018;90:5753–5757. doi: 10.1021/acs.analchem.8b00083. PubMed DOI
Kozior T., Kundera C.. Evaluation of the Influence of Parameters of FDM Technology on the Selected Mechanical Properties of Models. Procedia Engineering. 2017;192:463–468. doi: 10.1016/j.proeng.2017.06.080. DOI
Dudek P.. FDM 3D printing technology in manufacturing composite elements. Archives of Metallurgy and Materials. 2013;58:1415–1418. doi: 10.2478/amm-2013-0186. DOI
Ngo T. D., Kashani A., Imbalzano G., Nguyen K. T. Q., Hui D.. Recycled, Bio-Based, and Blended Composite Materials for 3D Printing Filament: Pros and ConsA Review. Compos. Part B Eng. 2018;143:172–196. doi: 10.1016/j.compositesb.2018.02.012. DOI
Rocha G. R., Ramos D. L. O., De Faria L. V., Germscheidt R. L., Dos Santos D. P., Bonacin J. A., Munoz R. A. A., Richter R. M.. Printing parameters affect the electrochemical performance of 3D-printed carbon electrodes obtained by fused deposition modeling. J. Electroanal. Chem. 2022;925:116910. doi: 10.1016/j.jelechem.2022.116910. DOI
Patel R., Jani S., Joshi A.. Review on multi-objective optimization of FDM process parameters for composite materials. International Jouirnal on Interactive Design and Manufacturing. 2023;17:2115–2125. doi: 10.1007/s12008-022-01111-9. DOI
Abdalla A., Hamzah H. H., Keattch O., Covill D., Patel B. A.. Augmentation of conductive pathways in carbon black/PLA 3D-printed electrodes achieved through varying printing parameters. Electrochim. Acta. 2020;354:136618. doi: 10.1016/j.electacta.2020.136618. DOI
Dammer, L. ; Carus, M. ; Iffland, K. ; Piotrowski, S. ; Sarmento, L. ; Chinthapalli, R. ; Raschka, A. . Study on current situation and trends of the bio-based industries in Europe; Renewable Carbon; 2017.
Belgacem, M. N. ; Gandini, A. . Monomers, Polymers and Composites from Renewable Resources, 1st edition; Elsevier, 2008.
Garlotta D.. A Literature Review of Poly(Lactic Acid) Journal of Polymers and the Evnvironment. 2001;9:63–84. doi: 10.1023/A:1020200822435. DOI
Avérous, L. Polylactic Acid: Synthesis, Properties and Applications. In Monomers, Polymers and Composites from Renewable Resources, 1st edition; Elsevier; 2008; pp 433–450.
Sharma A., Faber H., Khosla A., Anthopoulos T. D.. 3D printed electrochemical devices for bio-chemical sensing: A review. Materials Science and Engineering: R: Reports. 2023;156:100754. doi: 10.1016/j.mser.2023.100754. DOI
Stefano J. S., Kalinke C., Rocha R. G., Rocha D. P., Silva V. A. O. P., Bonacin J. A., Angnes L., Richter E. M., Janegitz B. C., Muñoz R. A. A.. Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Paramenters, and Post-Treatment Protocols. Anal. Chem. 2022;94:6417–6429. doi: 10.1021/acs.analchem.1c05523. PubMed DOI
Silva A. L., Salvador G. M. da S., Castro S. V. F., Carvalho N. M. F., Munoz R. A. A.. A 3D Printer Guide for the Development and Application of Electrochemical Cells and Devices. Front. Chem. 2021;9:684256. doi: 10.3389/fchem.2021.684256. PubMed DOI PMC
Bakker E., Telting-Diaz M.. Electrochemical Sensors. Anal. Chem. 2002;74:2781–2800. doi: 10.1021/ac0202278. PubMed DOI
Souza M. d. F. B.. Chemically modified electrodes applyes to electroanalysis: a brief presentation. Quim. Nova. 1997;20:191–195. doi: 10.1590/S0100-40421997000200011. DOI
Ambrosi A., Pumera M.. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016;45:2740–2755. doi: 10.1039/C5CS00714C. PubMed DOI
Stefano J. S., Kalinke C., Rocha R. G., Rocha D. P., Da Silva V. A. O. P., Bonacin J. A., Angnes L., Richter E. M., Janegitz B. C., Munoz R. A. A.. Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols. Anal. Chem. 2022;94:6417–6429. doi: 10.1021/acs.analchem.1c05523. PubMed DOI
Cruz M. A., Ye S., Kim M. J., Reyes C., Yang F., Flowers P. F., Wiley B. J.. Multigram synthesis of Cu-Ag core-shell nanowires enables the production of highly conductive polymer filament for 3D printing electronics. Part. Part. Syst. Char. 2018;35:1700385. doi: 10.1002/ppsc.201700385. DOI
Adams J. J., Duoss E. B., Malkowski T. F., Motala M. J., Ahn B. Y., Nuzzo R. G., Bernhard J. T., Lewis J. A.. Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces. Adv. Mater. 2011;23:1335–1340. doi: 10.1002/adma.201003734. PubMed DOI
Kwok S. W., Goh K. H. H., Tan Z. D., Tan S. T. M., Tjiu W. W., Soh J. Y., Glenn Ng Z. J., Chan Y. Z., Hui H. K., Goh K. E. J.. Electrically conductive filament for 3D-printed circuits and sensors. Appl. Mater. Today. 2017;9:167–175. doi: 10.1016/j.apmt.2017.07.001. DOI
Walker S. B., Lewis J. A.. Reactive silver inks for patterning high-conductivity features at mild temperatures. J. Am. Chem. Soc. 2012;134:1419–1421. doi: 10.1021/ja209267c. PubMed DOI
Tsuji H., Kawashima Y., Takikawa H., Tanaka S.. Poly(l-lactide)/nano-structured carbon composites: Conductivity, thermal properties, crystallization, and biodegradation. Polymer. 2007;48:4213–4225. doi: 10.1016/j.polymer.2007.05.040. DOI
Wei X., Li D., Jiang W., Gu Z., Wang X., Zhang Z., Sun Z.. 3D Printable Graphene Composite. Sci. Rep. 2015;5:11181. doi: 10.1038/srep11181. PubMed DOI PMC
Silva V. A. O. P., Fernandes-Junior W. S., Rocha D. P., Stefano J. S., Munoz R. A. A., Bonacin J. A., Janegitz B. C.. 3D-printed reduced graphene oxide/polylactic acid electrodes: A new prototyped platform for sensing and biosensing applications. Biosens. Bioelectron. 2020;170:112684. doi: 10.1016/j.bios.2020.112684. PubMed DOI
Li Y., Xu R., Wang H., Xu W., Tian L., Huang J., Liang C., Zhang Y.. Recent Advances of Biochar-Based Electrochemical Sensors and Biosensors. Biosensors. 2022;12:377. doi: 10.3390/bios12060377. PubMed DOI PMC
Kuan C.-F., Kuan H.-C., Ma C.-C. M., Chen C.-H.. Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. J. Phys. Chem. Solids. 2008;69:1395–1398. doi: 10.1016/j.jpcs.2007.10.060. DOI
Cardoso R. M., Kalinke C., Rocha R. G., dos Santos P. L., Rocha D. P., Oliveira P. R., Janegitz B. C., Bonacin J. A., Richter E. M., Munoz R. A. A.. Additive-manufactured (3D-printed) electrochemical sensors: A critical review. Anal. Chim. Acta. 2020;1118:73–91. doi: 10.1016/j.aca.2020.03.028. PubMed DOI
Kalinke C., Neumsteir N. V., Oliveira A. G., De Barros Ferraz T. V., Dos Santos P. L., Janegitz B. C., Bonacin J. A.. Comparison of activation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine. Analyst. 2020;145:1207–1218. doi: 10.1039/C9AN01926J. PubMed DOI
Kalinke C., Moscardi A. P. Z., De Oliveira P. R., Mangrich A. S., Marcolino-Junior L. H., Bergamini M. F.. Simple and low-cost sensor based on activated biochar for the stripping voltammetric detection of caffeic acid. Microchem. J. 2020;159:105380. doi: 10.1016/j.microc.2020.105380. DOI
Wirth D. M., Sheaff M. J., Waldman J. V., Symcox M. P., Whitehead H. D., Sharp J. D., Doerfler J. R., Lamar A. A., LeBlanc G.. Electrolysis Activation of Fused-Filament-Fabrication 3D-Printed Electrodes for Electrochemical and Spectroelectrochemical Analysis. Anal. Chem. 2019;91:5553–5557. doi: 10.1021/acs.analchem.9b01331. PubMed DOI
Browne M. P., Novotný F., Sofer Z., Pumera M.. 3D Printed Graphene Electrodes’ Electrochemical Activation. ACS Appl. Mater. Interfaces. 2018;10:40294–40301. doi: 10.1021/acsami.8b14701. PubMed DOI
Cardoso R. M., Mendoça D. M. H., Silva W. P., Silva M. N. T., Nossol E., Da Silva R. A. B., Richter E. M., Munoz R. A. A.. 3D Printing for electroanalysis: From multiuse electrochemical cells to sensors. Anal. Chim. Acta. 2018;1033:49–57. doi: 10.1016/j.aca.2018.06.021. PubMed DOI
Novotny F., Urbanova V., Plutnar J., Pumera M.. Preserving Fine Structure Details and Dramatically Enhancing Electron Transfer Rates in Graphene 3D-Printed Electrodes via Thermal Annealing: Toward Nitroaromatic Explosives Sensing. ACS Appl. Mater. Interfaces. 2019;11:35371–35375. doi: 10.1021/acsami.9b06683. PubMed DOI
Carvalho M. S., Rocha R. G., Nascimento A. B., Araújo D. A. G., Paixao T. R. L. C., Lopes O. F., Richter E. M., Munoz R. A. A.. Enhanced electrochemical performance of 3D-printed electrodes via blue-laser irradiation and (electro)chemical treatment. Electrochim. Acta. 2024;506:144995. doi: 10.1016/j.electacta.2024.144995. DOI
Gusmão R., Browne M. P., Sofer Z., Pumera M.. The capacitance and electron transfer of 3D-printed graphene electrodes are dramatically influenced by the type of solvent used for pre-treatment. Electrochem. Commun. 2019;102:83–88. doi: 10.1016/j.elecom.2019.04.004. DOI
Mckeown P., Jones D.. The Chemical Recycling of PLA: A Review. Sustain. Chem. 2020;1:1–22. doi: 10.3390/suschem1010001. DOI
Redondo E., Muñoz J., Pumera M.. Green activation using reducing agents of carbon-based 3D printed electrodes: Turning good electrodes to great. Carbon. 2021;175:413–419. doi: 10.1016/j.carbon.2021.01.107. DOI
Novotný F., Urbanová V., Plutnar J., Pumera M.. Preserving Fine Structure Details and Dramatically Enhancing Electron Transfer Rates in Graphene 3D-Printed Electrodes via Thermal Annealing: Toward Nitroaromatic Explosives Sensing. Applied Materials and Interfaces. 2019;11:35371–35375. doi: 10.1021/acsami.9b06683. PubMed DOI
Dos Santos P. L., Katic V., Loureiro H. C., Dos Santos M. F., Dos Santos D. P., Formiga A. L. B., Bonacin J. A.. Enhanced performance of 3D printed graphene electrodes after electrochemical pre-treatment: Role of exposed graphene sheets. Sens. Actuators B Chem. 2019;281:837–848. doi: 10.1016/j.snb.2018.11.013. DOI
Fontana-Escartín A., Lanzalaco S., Peréz-Madrigal M. M., Bertran O., Alemán C.. Electrochemical activation for sensing of three-dimensional-printed poly(lactic acid) using low-pressure plasma. Plasma Process. Polym. 2022;19:2200101. doi: 10.1002/ppap.202200101. DOI
Homola T., Kelar J., Černák M., Kováčik D.. High-power density surface plasma generated by diffuse coplanar surface barrier discharge. Vakuum Forshung Praxis. 2022;34:4. doi: 10.1002/vipr.202200785. DOI
Kilinc F. B., Bozaci E., Kilinc A. C., Turkoglu T.. Effect of Atmospheric Plasma Treatment on Mechanical Properties of 3D-Printed Continuous Aramid Fiber/PLA Composites. Polymers. 2025;17:397. doi: 10.3390/polym17030397. PubMed DOI PMC
De Geyter N., Morent R., Desmet T., Trentesaux M., Gengembre L., Dubruel P., Leys C., Payen E.. Plasma modification of polylactic acid in a medium pressure DBD. Surf. Coat. Technol. 2010;204:3272–3279. doi: 10.1016/j.surfcoat.2010.03.037. DOI
Luque-Agudo V., Hierro-Oliva M., Gallardo-Moreno A. M., González-Martín M. L.. Effect of plasma treatment on the surface properties of polylactic acid films. Polym. Test. 2021;96:107097. doi: 10.1016/j.polymertesting.2021.107097. DOI
Pereira J. F. S., Rocha R. G., Castro S. V. F., Joao A. F., Borges P. H. S., Rocha D. P., De Siervo A., Richter E. M., Nossol E., Gelamo R. V., Munoy R. A. A.. Reactive oxygen plasma treatment of 3D-printed carbon electrodes towars high-performance electrochemical sensors. Sens. Actuators, B. 2021;347:130651. doi: 10.1016/j.snb.2021.130651. DOI
Nasir M. Z. M., Novotný F., Alduhaish O., Pumera M.. 3D-printed electrodes for the detection of mycotoxins in food. Electrochem. Commun. 2020;115:106735. doi: 10.1016/j.elecom.2020.106735. DOI
Kalinke C., Neumsteir N. V., De Oliveira Aprecido G., De Barros Ferraz T. V., Dos Santos P. L., Janegity B. C., Bonacin J. A.. Comparison of activvation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine. Analyst. 2020;145:1207–1218. doi: 10.1039/C9AN01926J. PubMed DOI
Kwaczynski K., Szymaniec O., Bobrowska D. M., Poltorak L.. Solvent-activated 3D-printed electrodes and their electroanalytical potential. Sci. Rep. 2023;13:22797. doi: 10.1038/s41598-023-49599-9. PubMed DOI PMC
Bokobza L., Buneel J.-L., Couzi M.. Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black. Chem. Phys. Lett. 2013;590:153–159. doi: 10.1016/j.cplett.2013.10.071. DOI
Buchlová T., Hatala M., Vete3ka P., H8y A., Novák P., Mackul’ak T., Mikula M., Gemeiner P.. Screen-printed counter-electrodes based on biochar derived from wood-corn silage and titanium isopropoxide binder as a more efficient and renewable alternative to Pt-CE for dye-sensitized solar cells. Mater. Sci. Semicond. Process. 2024;171:108016. doi: 10.1016/j.mssp.2023.108016. DOI
Glowacki M. J.. Helium-assisted, solvent-free electro-activation of 3D printed conductive carbon-polylactide electrodes by pulsed laser ablation. Appl. Surf. Sci. 2021;556:149788. doi: 10.1016/j.apsusc.2021.149788. DOI
Gustus R., Wegewitz L.. Modification of polylactic acid (PLA) surfaces by argon DBD plasma jet treatment and x-ray irradiation. Appl. Surf. Sci. 2025;689:162589. doi: 10.1016/j.apsusc.2025.162589. DOI
Kalogirou C., Hooft O., Godde A.. Assessing the Time Dependence of AOPs on the Surface Properties of Polylactic Acid. J. Polym. Environ. 2022;31:345–357. doi: 10.1007/s10924-022-02608-w. DOI
Chwatal S., Zažímal F., Buršíková V., Kaindl R., Homola T.. Modification of silicon-polyurethane-based sol-gel coatings through diverse plasma technologies: investgation of impact on surface properties. New J. Chem. 2024;12:5232–5246. doi: 10.1039/D3NJ05986C. DOI
Vida J., Ilčíková M., Přibyl R.. Rapid Atmospheric Pressure Ambient Air Plasma Functionalization of Poly(styrene) and Poly(ethersulfone) Foils. Plasma Chem. Plasma Process. 2021;41:841–854. doi: 10.1007/s11090-021-10155-w. DOI
Silva T. A., Moraes F. C., Janegitz B. C., Fatibello-Filho O.. Electrochemical Biosensors Based on Nanostructured Carbon Black: A Review. J. Nanomater. 2017;2017:14. doi: 10.1155/2017/4571614. DOI
Cascaini de Torre L. E., Bottani E. J., Martínez-Alonso A., Cuesta A., García A. B., Tascón J. M. D.. Effects of oxygen plasma treatment on the surface of graphitized carbon black. Carbon. 1998;36:277–282. doi: 10.1016/S0008-6223(97)00180-2. DOI
Ambolikar A. S., Guin S. K., Neogy S.. An insight into the outer- and inner-sphere electrochemistry of oxygenated single-walled carbon nanohorns (o-SWCNHs) New J. Chem. 2019;43:18210–18219. doi: 10.1039/C9NJ04467A. DOI
Redondo E., Munoz J., Pumera M.. Green activation using reducing agents of carbon-based 3D printed electrodes: Turning good electrodes to great. Carbon. 2021;175:413–419. doi: 10.1016/j.carbon.2021.01.107. DOI
Browne M. P., Novotný F., Sofer Z., Pumera M.. 3D Printed Graphene Electrodes′ Electrochemical Activation. Appl. Mater. Interfaces. 2018;10:40292–40301. doi: 10.1021/acsami.8b14701. PubMed DOI
Farines M. H., Martins E. C., Baumgarten L. G., Winiarski J. P., Santana E. R., Spinelli A., Debacher N. A., Vieira I. C.. Argon non-thermal plasma jet-activated 3D-printed disposable electrochemical sensor for the determination of methyldopa. Electrochim. Acta. 2025;517:145722. doi: 10.1016/j.electacta.2025.145722. DOI
Siquera G. P., Rocha R. G., NAscimento A. B., Richter E. M., Munoz R. A. A.. Portable Atmospheric Air Plasma Jet Pen for the Surface Treatment of Three-Dimensionally (3D)-Printed Electrodes. Anal. Chem. 2024;96:15852–15858. doi: 10.1021/acs.analchem.4c02785. PubMed DOI PMC
Kozlowska K., Cieslik M., Koterwa A., Formela K., Ryl J., Niedzialkowski P.. Microwave-Induced Processing of Free-Standing 3D Printouts: An Effortless Route to High-Redox Kinetics in electroanalysis. Materials. 2024;17:2833. doi: 10.3390/ma17122833. PubMed DOI PMC
Rocha D. P., Squissato A. L., Da Silva S. M., Richter E. M., Munoz R. A. A.. Improved electrochemical detection of metals in biological samples using 3D-printed electrode: Chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochim. Acta. 2020;335:135688. doi: 10.1016/j.electacta.2020.135688. DOI
Rodrigues J. G. A., Silva T. M. N., Gomes Junior S. B., Marins A. A. L., Dos Santos G. F. S., Ferreira R. Q., Freits J. C. C.. Optimizing the Construction and Activation of 3D-Printed Electrochemical Sensors: An Experimental Design Approach for Simultaneous electroanalysis of Paracetamol and Caffeine. ACS Omega. 2025;10:1131–1143. doi: 10.1021/acsomega.4c08593. PubMed DOI PMC
Veloso W. B., Ataide V. N., Rocha D. P.. 3D-printed sensor decorated with nanomaterials by CO2 laser ablation and electrochemical treatment for non-enzymatic tyrosine detection. Microchim. Acta. 2023;190:63. doi: 10.1007/s00604-023-05648-8. PubMed DOI
Homola T., Ďurašová Z., Shekargoftar M., Souček P., Dzik P.. Optimization of TiO2Mesoporous Photoanodes Prepared by Inkjet Printing and Low-Temperature Plasma Processing. Plasma Chemistry and Plasma Processing. 2020;40:1311–1330. doi: 10.1007/s11090-020-10086-y. DOI
Šimek M., Homola T.. Plasma-assisted agriculture: history, presence, and prospects–a review. Eur. Phys. J. D. 2021;75:210. doi: 10.1140/epjd/s10053-021-00206-4. DOI