Influence of Solvent Choice on Mitomycin C Loading and Stability in Electrospun Polyvinylidene Fluoride Nanofibers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40978389
PubMed Central
PMC12444496
DOI
10.1021/acsomega.5c03670
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This study investigates the influence of solvent systems on incorporating the hydrophilic drug mitomycin C (MMC) into electrospun polyvinylidene fluoride (PVDF) nanofibers, with a focus on the often-overlooked issue of active substance degradation during storage. MMC was dissolved in either water or acetone and added to the electrospinning solution, followed by quantification of drug loading using liquid chromatography. Dissolution of MMC in water resulted in poor drug loading efficiency. In contrast, acetone led to significantly higher incorporation, with 50.66% loading for PVDF containing 0.01% MMC and 26.63% for PVDF with 0.1% MMC. However, storage at 4 °C over 21 days resulted in a substantial decline in MMC content, indicating challenges in long-term stability. In vitro testing using mouse fibroblasts revealed no cytotoxic effects of the nanofibrous layers and demonstrated a reduction in fibroblast proliferation in MMC-loaded samples compared to pure PVDF controls. These findings highlight the importance of solvent selection for effective drug incorporation and point to the potential of PVDF-based nanofibers for antifibrotic applications.
Zobrazit více v PubMed
Gaydhane M. K., Sharma C. S., Majumdar S.. Electrospun Nanofibres in Drug Delivery: Advances in Controlled Release Strategies. RSC Adv. 2023;13(11):7312–7328. doi: 10.1039/D2RA06023J. PubMed DOI PMC
Farhaj S., Conway B. R., Ghori M. U.. Nanofibres in Drug Delivery Applications. Fibers. 2023;11(2):21. doi: 10.3390/fib11020021. DOI
Josyula A., Mozzer A., Szeto J., Ha Y., Richmond N., Chung S. W., Rompicharla S. V. K., Narayan J., Ramesh S., Hanes J., Ensign L., Parikh K., Pitha I.. Nanofiber-based Glaucoma Drainage Implant Improves Surgical Outcomes by Modulating Fibroblast Behavior. Bioeng. Transl. Med. 2023;8(3):e10487. doi: 10.1002/btm2.10487. PubMed DOI PMC
Parikh K. S., Josyula A., Omiadze R., Ahn J. Y., Ha Y., Ensign L. M., Hanes J., Pitha I.. Nano-Structured Glaucoma Drainage Implant Safely and Significantly Reduces Intraocular Pressure in Rabbits via Post-Operative Outflow Modulation. Sci. Rep. 2020;10(1):12911. doi: 10.1038/s41598-020-69687-4. PubMed DOI PMC
Klapstova A., Horakova J., Tunak M., Shynkarenko A., Erben J., Hlavata J., Bulir P., Chvojka J.. A PVDF Electrospun Antifibrotic Composite for Use as a Glaucoma Drainage Implant. Mater. Sci. Eng., C. 2021;119:111637. doi: 10.1016/j.msec.2020.111637. PubMed DOI
Dong A., Han L., Shao Z., Fan P., Zhou X., Yuan H.. Glaucoma Drainage Device Coated with Mitomycin C Loaded Opal Shale Microparticles to Inhibit Bleb Fibrosis. ACS Appl. Mater. Interfaces. 2019;11(10):10244–10253. doi: 10.1021/acsami.8b18551. PubMed DOI
Sahiner N., Kravitz D. J., Qadir R., Blake D. A., Haque S., John V. T., Margo C. E., Ayyala R. S.. Creation of a Drug-Coated Glaucoma Drainage Device Using Polymer Technology: In Vitro and In Vivo Studies. Arch. Ophthalmol. 2009;127(4):448–453. doi: 10.1001/archophthalmol.2009.19. PubMed DOI
Concha V. O. C., Timóteo L., Duarte L. A. N., Bahú J. O., Munoz F. L., Silva A. P., Lodi L., Severino P., León-Pulido J., Souto E. B.. Properties Characterization and Biomedical Applications of Polyvinylidene Fluoride (PVDF): A Review. J. Mater. Sci. 2024;59(31):14185–14204. doi: 10.1007/s10853-024-10046-3. DOI
Pourmadadi M., Ahmari A., Mirshafiei M., Omrani Z., Yazdian F., Rahdar A., Fathi-karkan S., Aboudzadeh M. A.. Polyvinylidene Fluoride in Biomedical Applications: Properties, Challenges, and Future Prospects. Eur. Polym. J. 2025;231:113889. doi: 10.1016/j.eurpolymj.2025.113889. DOI
Mohajeri A., Amigh S.. In the Search of Active Nanocarriers for Delivery of Mitomycin C Drug. Mater. Adv. 2020;1(6):1909–1919. doi: 10.1039/D0MA00018C. DOI
Pourmadadi M., Ghaemi A., Shaghaghi M., Naderian N., Yazdian F., Rahdar A., Romanholo Ferreira L. F.. Macromolecules and Nanomaterials Loaded with Mitomycin C as Promising New Treatment Option Cancer Drug Nanoformulation: A Literature Review. J. Drug Delivery Sci. Technol. 2023;87:104835. doi: 10.1016/j.jddst.2023.104835. DOI
Wilkins M., Indar A., Wormald R.. Intraoperative Mitomycin C for Glaucoma Surgery. Cochrane Database Syst. Rev. 2005;2010(2):CD002897. doi: 10.1002/14651858.CD002897.pub2. PubMed DOI PMC
Abraham L. M., Selva D., Casson R., Leibovitch I.. Mitomycin. Drugs. 2006;66(3):321–340. doi: 10.2165/00003495-200666030-00005. PubMed DOI
Beijnen J. H., van Gijn R., Underberg W. J.. Chemical Stability of the Antitumor Drug Mitomycin C in Solutions for Intravesical Instillation. J. Parenter. Sci. Technol. Publ. Parenter. Drug Assoc. 1990;44(6):332–335. PubMed
Shi R., Huang Y., Zhang J., Wu C., Gong M., Tian W., Zhang L.. Effective Delivery of Mitomycin-C and Meloxicam by Double-Layer Electrospun Membranes for the Prevention of Epidural Adhesions. J. Biomed. Mater. Res. B Appl. Biomater. 2020;108(2):353–366. doi: 10.1002/jbm.b.34394. PubMed DOI
Zhao X., Jiang S., Liu S., Chen S., Lin Z. Y., Pan G., He F., Li F., Fan C., Cui W.. Optimization of Intrinsic and Extrinsic Tendon Healing through Controllable Water-Soluble Mitomycin-C Release from Electrospun Fibers by Mediating Adhesion-Related Gene Expression. Biomaterials. 2015;61:61–74. doi: 10.1016/j.biomaterials.2015.05.012. PubMed DOI
Hashem H. M., Motawea A., Kamel A. H., Bary E. M. A., Hassan S. S. M.. Fabrication and Characterization of Electrospun Nanofibers Using Biocompatible Polymers for the Sustained Release of Venlafaxine. Sci. Rep. 2022;12(1):18037. doi: 10.1038/s41598-022-22878-7. PubMed DOI PMC
Ghasemvand F., Kabiri M., Hassan-Zadeh V., Simchi A.. Chitosan, Polyethylene Oxide/Polycaprolactone Electrospun Core/Shell Nanofibrous Mat Containing Rosuvastatin as a Novel Drug Delivery System for Enhancing Human Mesenchymal Stem Cell Osteogenesis. Front. Mol. Biosci. 2023;10:1220357. doi: 10.3389/fmolb.2023.1220357. PubMed DOI PMC
Geyik F., Kaya S., Yılmaz D. E., Demirci H., Akmayan I. ˙., Özbek T., Acar S.. Propolis-Loaded Poly(Lactic-Co-Glycolic Acid) Nanofibers: An In Vitro Study. ACS Omega. 2024;9(12):14054–14062. doi: 10.1021/acsomega.3c09492. PubMed DOI PMC
ISO 10993-5, 2009. https://www.iso.org/standard/36406.html (accessed Apr 14, 2025).
ISO 10993-7, 2008. https://www.iso.org/standard/34213.html (accessed Apr 17, 2025).
Aghayari S.. PVDF Composite Nanofibers Applications. Heliyon. 2022;8(11):e11620. doi: 10.1016/j.heliyon.2022.e11620. PubMed DOI PMC
Durán-Rey D., Brito-Pereira R., Ribeiro C., Ribeiro S., Sánchez-Margallo J. A., Crisóstomo V., Irastorza I., Silván U., Lanceros-Méndez S., Sánchez-Margallo F. M.. Development and Evaluation of Different Electroactive Poly(Vinylidene Fluoride) Architectures for Endothelial Cell Culture. Front. Bioeng. Biotechnol. 2022;10:1044667. doi: 10.3389/fbioe.2022.1044667. PubMed DOI PMC
Bagherzadeh E., Sherafat Z., Zebarjad S. M., Khodaei A., Yavari S. A.. Stimuli-Responsive Piezoelectricity in Electrospun Polycaprolactone (PCL)/Polyvinylidene Fluoride (PVDF) Fibrous Scaffolds for Bone Regeneration. J. Mater. Res. Technol. 2023;23:379–390. doi: 10.1016/j.jmrt.2023.01.007. DOI
Zaszczyńska A., Gradys A., Ziemiecka A., Szewczyk P. K., Tymkiewicz R., Lewandowska-Szumieł M., Stachewicz U., Sajkiewicz P. Ł.. Enhanced Electroactive Phases of Poly(Vinylidene Fluoride) Fibers for Tissue Engineering Applications. Int. J. Mol. Sci. 2024;25(9):4980. doi: 10.3390/ijms25094980. PubMed DOI PMC
Yin J.-Y., Boaretti C., Lorenzetti A., Martucci A., Roso M., Modesti M.. Effects of Solvent and Electrospinning Parameters on the Morphology and Piezoelectric Properties of PVDF Nanofibrous Membrane. Nanomaterials. 2022;12(6):962. doi: 10.3390/nano12060962. PubMed DOI PMC
Nuamcharoen P., Kobayashi T., Potiyaraj P.. Influence of Volatile Solvents and Mixing Ratios of Binary Solvent Systems on Morphology and Performance of Electrospun Poly(Vinylidene Fluoride) Nanofibers. Polym. Int. 2021;70(10):1465–1477. doi: 10.1002/pi.6218. DOI
Li Y., Zhu J., Cheng H., Li G., Cho H., Jiang M., Gao Q., Zhang X.. Developments of Advanced Electrospinning Techniques: A Critical Review. Adv. Mater. Technol. 2021;6(11):2100410. doi: 10.1002/admt.202100410. DOI
Bonakdar M. A., Rodrigue D.. Electrospinning: Processes, Structures, and Materials. Macromol. 2024;4(1):58–103. doi: 10.3390/macromol4010004. DOI
Sarma S., Gaur C., Benarrait R., Haus J. N., Koch E., Dietzel A.. Prediction of Bead Formation in PVDF Fiber across Different Solvent Systems Using Interpretable Machine Learning. Polymer. 2025;317:127972. doi: 10.1016/j.polymer.2024.127972. DOI
Patel R. K., Jonnalagadda S., Gupta P. K.. Use of Flory-Huggins Interaction Parameter and Contact Angle Values to Predict the Suitability of the Drug-Polymer System for the Production and Stability of Nanosuspensions. Pharm. Res. 2022;39(5):1001–1017. doi: 10.1007/s11095-022-03269-z. PubMed DOI
Milczewska K., Voelkel A., Zwolińska J., Jędro D.. Preparation of Hybrid Materials for Controlled Drug Release. Drug Dev. Ind. Pharm. 2016;42(7):1058–1065. doi: 10.3109/03639045.2015.1107092. PubMed DOI
Wang F., Altschuh P., Ratke L., Zhang H., Selzer M., Nestler B.. Progress Report on Phase Separation in Polymer Solutions. Adv. Mater. 2019;31(26):1806733. doi: 10.1002/adma.201806733. PubMed DOI
Molekula Group . (17545348) Mitomycin C [50–07–7], Molekula Group. https://molkula.com/catalog/50-07-7/17545348-mitomycin-c (accessed May 26, 2025).
Böncü T. E., Ozdemir N.. Effects of Drug Concentration and PLGA Addition on the Properties of Electrospun Ampicillin Trihydrate-Loaded PLA Nanofibers. Beilstein J. Nanotechnol. 2022;13(1):245–254. doi: 10.3762/bjnano.13.19. PubMed DOI PMC
Chen T., Kunnavatana S. S., Koch R. J.. Effects of Mitomycin-C on Normal Dermal Fibroblasts. Laryngoscope. 2006;116(4):514–517. doi: 10.1097/01.MLG.0000205590.62824.0A. PubMed DOI
Blake D. A., Sahiner N., John V. T., Clinton A. D., Galler K. E., Walsh M., Arosemena A., Johnson P. Y., Ayyala R. S.. Inhibition of Cell Proliferation by Mitomycin C Incorporated into P(HEMA) Hydrogels. J. Glaucoma. 2006;15(4):291. doi: 10.1097/01.ijg.0000212236.96039.9c. PubMed DOI