Intensification of thermophilic anaerobic digestion of sewage sludge by thermal hydrolysis
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41026597
DOI
10.2166/wst.2025.131
PII: wst_2025_131
Knihovny.cz E-zdroje
- Klíčová slova
- sludge dewaterability, sludge digestion intensification, specific biogas production, thermal post-treatment, thermal pre-treatment,
- MeSH
- anaerobióza MeSH
- biopaliva MeSH
- bioreaktory MeSH
- hydrolýza MeSH
- methan MeSH
- odpad tekutý - odstraňování * metody MeSH
- odpadní vody * chemie MeSH
- vysoká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biopaliva MeSH
- methan MeSH
- odpadní vody * MeSH
Thermal hydrolysis (THP) combined with thermophilic anaerobic digestion (TAD) offers promising pathways for enhancing sewage sludge treatment. This study is among the first to directly compare THP as both pre- and post-treatment options for TAD. Pre-treatment of waste activated sludge (THP-WAS) and post-treatment of digested sludge (THP-DS) were evaluated on their impacts on process stability, biogas production, and sludge dewaterability. Pilot-scale trials at a wastewater treatment plant (WWTP) in Prague revealed that THP-WAS increased sludge solubilization but faced challenges such as volatile fatty acid accumulation, adversely affecting reactor stability and specific biogas yield. In contrast, THP-DS enhanced biogas production by 10%, improved sludge dewaterability, and achieved superior methane content (73.2%). Further research is needed to optimize THP parameters for reactor stability and to better understand interactions between hydrolyzed WAS and primary sludge.
Prazska Vodohospodarska Spolecnost a s Evropska 866 67 160 00 Prague Czech Republic
Prazske Vodovody a Kanalizace a s Ke Kablu 971 1 102 00 Prague Czech Republic
Zobrazit více v PubMed
APHA (2012) Standard Methods for the Examination of Water and Wastewater. New York, NY, USA: American Public Health Association, American Water Works Association, Water Environment Federation.
Appels L., Baeyens J., Degrève J. & Dewil R. (2008) Principles and potential of the anaerobic digestion of waste-activated sludge, Progress in Energy and Combustion Science, 34, 755–781. https://doi.org/10.1016/j.pecs.2008.06.002.
Barber W. P. F. (2016) Thermal hydrolysis for sewage treatment: a critical review, Water Research, 104, 53–71. https://doi.org/10.1016/j.watres.2016.07.069. PubMed
Barber W. (2020) Sludge Thermal Hydrolysis: Application and Potential, 1st edn. London, UK: IWA Publishing.
Braguglia C. M., Carozza N., Gagliano M. C., Gallipoli A., Gianico A., Rossetti S., Suschka J., Tomei M. C. & Mininni G. (2014) Advanced anaerobic processes to enhance waste activated sludge stabilization, Water Science and Technology, 69, 1728–1734. https://doi.org/10.2166/wst.2014.067. PubMed
Braguglia C. M., Gianico A., Gallipoli A. & Mininni G. (2015) The impact of sludge pre-treatments on mesophilic and thermophilic anaerobic digestion efficiency: role of the organic load, Chemical Engineering Journal, 270, 362–371. https://doi.org/10.1016/j.cej.2015.02.037.
Chen Z., Li W., Qin W., Sun C., Wang J. & Wen X. (2020) Long-term performance and microbial community characteristics of pilot-scale anaerobic reactors for thermal hydrolyzed sludge digestion under mesophilic and thermophilic conditions, Science of The Total Environment, 720, 137566. https://doi.org/10.1016/j.scitotenv.2020.137566. PubMed
Devos P., Haddad M. & Carrère H. (2021) Thermal hydrolysis of municipal sludge: finding the temperature sweet spot: a review, Waste and Biomass Valorization, 12, 2187–2205. https://doi.org/10.1007/s12649-020-01130-1.
Gebreeyessus G. & Jenicek P. (2016) Thermophilic versus mesophilic anaerobic digestion of sewage sludge: a comparative review, Bioengineering, 3, 15. https://doi.org/10.3390/bioengineering3020015. PubMed
Gianico A., Braguglia C. M., Cesarini R. & Mininni G. (2013) Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load, Bioresource Technology, 143, 96–103. https://doi.org/10.1016/j.biortech.2013.05.069. PubMed
Han D., Lee C.-Y., Chang S. W. & Kim D.-J. (2017) Enhanced methane production and wastewater sludge stabilization of a continuous full scale thermal pretreatment and thermophilic anaerobic digestion, Bioresource Technology, 245, 1162–1167. https://doi.org/10.1016/j.biortech.2017.08.108. PubMed
Huang F., Liu H., Wen J., Zhao C., Dong L. & Liu H. (2021) Underestimated humic acids release and influence on anaerobic digestion during sludge thermal hydrolysis, Water Research, 201, 117310. https://doi.org/10.1016/j.watres.2021.117310. PubMed
Karmann C., Mágrová A., Jeníček P., Bartáček J. & Kouba V. (2024) Advances in nitrogen removal and recovery technologies from reject water: economic and environmental perspectives, Bioresource Technology, 391, 129888. https://doi.org/10.1016/j.biortech.2023.129888. PubMed
Kor-Bicakci G. & Eskicioglu C. (2019) Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion, Renewable and Sustainable Energy Reviews, 110, 423–443. https://doi.org/10.1016/j.rser.2019.05.002.
Lanko I., Hejnic J., Říhová-Ambrožová J., Ferrer I. & Jenicek P. (2021) Digested sludge quality in mesophilic, thermophilic and temperature-phased anaerobic digestion systems, Water, 13, 2839. https://doi.org/10.3390/w13202839.
Li B., Ladipo-Obasa M., Romero A., Wadhawan T., Tobin M., Manning E., Higgins M., Al-Omari A., Murthy S., Novak J. T., Riffat R. & De Clippeleir H. (2021) The inhibitory impact of ammonia on thermally hydrolyzed sludge fed anaerobic digestion, Water Environment Research, 93, 1263–1275. https://doi.org/10.1002/wer.1509. PubMed
Magrova A. & Jenicek P. (2021) Thermal hydrolysis to enhance energetic potential of sewage sludge: a review, Paliva, 13, 59–68. https://doi.org/10.35933/paliva.2021.02.05.
Ngo P. L., Udugama I. A., Gernaey K. V., Young B. R. & Baroutian S. (2021) Mechanisms, status, and challenges of thermal hydrolysis and advanced thermal hydrolysis processes in sewage sludge treatment, Chemosphere, 281, 130890. https://doi.org/10.1016/j.chemosphere.2021.130890. PubMed
Pavez-Jara J. A., Van Lier J. B. & De Kreuk M. K. (2023) Accumulating ammoniacal nitrogen instead of melanoidins determines the anaerobic digestibility of thermally hydrolyzed waste activated sludge, Chemosphere, 332, 138896. https://doi.org/10.1016/j.chemosphere.2023.138896. PubMed
Svennevik O. K., Solheim O. E., Beck G., Sørland G. H., Jonassen K. R., Rus E., Westereng B., Horn S. J., Higgins M. J. & Nilsen P. J. (2019) Effects of post anaerobic digestion thermal hydrolysis on dewaterability and moisture distribution in digestates, Water Science and Technology, 80, 1338–1346. https://doi.org/10.2166/wst.2019.379. PubMed
Svensson K., Kjørlaug O., Higgins M. J., Linjordet R. & Horn S. J. (2018) Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: effect on methane yields, dewaterability and solids reduction, Water Research, 132, 158–166. https://doi.org/10.1016/j.watres.2018.01.008. PubMed
Tiehm A., Nickel K., Zellhorn M. & Neis U. (2001) Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization, Water Research, 35, 2003–2009. https://doi.org/10.1016/S0043-1354(00)00468-1. PubMed
Toutian V., Barjenbruch M., Unger T., Loderer C. & Remy C. (2020) Effect of temperature on biogas yield increase and formation of refractory COD during thermal hydrolysis of waste activated sludge, Water Research, 171, 115383. https://doi.org/10.1016/j.watres.2019.115383. PubMed
Wang X., Lyu T., Dong R. & Wu S. (2022) Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion, Journal of Environmental Management, 301, 113914. https://doi.org/10.1016/j.jenvman.2021.113914. PubMed
Yang Z., Wang W., He Y., Zhang R. & Liu G. (2018) Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions, Renewable Energy, 125, 915–925. https://doi.org/10.1016/j.renene.2018.03.032.
Yang D., Hu C., Dai L., Liu Z., Dong B. & Dai X. (2019) Post-thermal hydrolysis and centrate recirculation for enhancing anaerobic digestion of sewage sludge, Waste Management, 92, 39–48. https://doi.org/10.1016/j.wasman.2019.04.044. PubMed
Zhang G., Yang J., Liu H. & Zhang J. (2009) Sludge ozonation: disintegration, supernatant changes and mechanisms, Bioresource Technology, 100, 1505–1509. https://doi.org/10.1016/j.biortech.2008.08.041. PubMed
Zhang D., Jiang H., Chang J., Sun J., Tu W. & Wang H. (2019) Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production, Bioresource Technology, 279, 92–100. https://doi.org/10.1016/j.biortech.2019.01.077. PubMed