Intensification of thermophilic anaerobic digestion of sewage sludge by thermal hydrolysis

. 2025 Sep ; 92 (6) : 843-855. [epub] 20250904

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41026597

Thermal hydrolysis (THP) combined with thermophilic anaerobic digestion (TAD) offers promising pathways for enhancing sewage sludge treatment. This study is among the first to directly compare THP as both pre- and post-treatment options for TAD. Pre-treatment of waste activated sludge (THP-WAS) and post-treatment of digested sludge (THP-DS) were evaluated on their impacts on process stability, biogas production, and sludge dewaterability. Pilot-scale trials at a wastewater treatment plant (WWTP) in Prague revealed that THP-WAS increased sludge solubilization but faced challenges such as volatile fatty acid accumulation, adversely affecting reactor stability and specific biogas yield. In contrast, THP-DS enhanced biogas production by 10%, improved sludge dewaterability, and achieved superior methane content (73.2%). Further research is needed to optimize THP parameters for reactor stability and to better understand interactions between hydrolyzed WAS and primary sludge.

Zobrazit více v PubMed

APHA (2012) Standard Methods for the Examination of Water and Wastewater. New York, NY, USA: American Public Health Association, American Water Works Association, Water Environment Federation.

Appels L., Baeyens J., Degrève J. & Dewil R. (2008) Principles and potential of the anaerobic digestion of waste-activated sludge, Progress in Energy and Combustion Science, 34, 755–781. https://doi.org/10.1016/j.pecs.2008.06.002.

Barber W. P. F. (2016) Thermal hydrolysis for sewage treatment: a critical review, Water Research, 104, 53–71. https://doi.org/10.1016/j.watres.2016.07.069. PubMed

Barber W. (2020) Sludge Thermal Hydrolysis: Application and Potential, 1st edn. London, UK: IWA Publishing.

Braguglia C. M., Carozza N., Gagliano M. C., Gallipoli A., Gianico A., Rossetti S., Suschka J., Tomei M. C. & Mininni G. (2014) Advanced anaerobic processes to enhance waste activated sludge stabilization, Water Science and Technology, 69, 1728–1734. https://doi.org/10.2166/wst.2014.067. PubMed

Braguglia C. M., Gianico A., Gallipoli A. & Mininni G. (2015) The impact of sludge pre-treatments on mesophilic and thermophilic anaerobic digestion efficiency: role of the organic load, Chemical Engineering Journal, 270, 362–371. https://doi.org/10.1016/j.cej.2015.02.037.

Chen Z., Li W., Qin W., Sun C., Wang J. & Wen X. (2020) Long-term performance and microbial community characteristics of pilot-scale anaerobic reactors for thermal hydrolyzed sludge digestion under mesophilic and thermophilic conditions, Science of The Total Environment, 720, 137566. https://doi.org/10.1016/j.scitotenv.2020.137566. PubMed

Devos P., Haddad M. & Carrère H. (2021) Thermal hydrolysis of municipal sludge: finding the temperature sweet spot: a review, Waste and Biomass Valorization, 12, 2187–2205. https://doi.org/10.1007/s12649-020-01130-1.

Gebreeyessus G. & Jenicek P. (2016) Thermophilic versus mesophilic anaerobic digestion of sewage sludge: a comparative review, Bioengineering, 3, 15. https://doi.org/10.3390/bioengineering3020015. PubMed

Gianico A., Braguglia C. M., Cesarini R. & Mininni G. (2013) Reduced temperature hydrolysis at 134 °C before thermophilic anaerobic digestion of waste activated sludge at increasing organic load, Bioresource Technology, 143, 96–103. https://doi.org/10.1016/j.biortech.2013.05.069. PubMed

Han D., Lee C.-Y., Chang S. W. & Kim D.-J. (2017) Enhanced methane production and wastewater sludge stabilization of a continuous full scale thermal pretreatment and thermophilic anaerobic digestion, Bioresource Technology, 245, 1162–1167. https://doi.org/10.1016/j.biortech.2017.08.108. PubMed

Huang F., Liu H., Wen J., Zhao C., Dong L. & Liu H. (2021) Underestimated humic acids release and influence on anaerobic digestion during sludge thermal hydrolysis, Water Research, 201, 117310. https://doi.org/10.1016/j.watres.2021.117310. PubMed

Karmann C., Mágrová A., Jeníček P., Bartáček J. & Kouba V. (2024) Advances in nitrogen removal and recovery technologies from reject water: economic and environmental perspectives, Bioresource Technology, 391, 129888. https://doi.org/10.1016/j.biortech.2023.129888. PubMed

Kor-Bicakci G. & Eskicioglu C. (2019) Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion, Renewable and Sustainable Energy Reviews, 110, 423–443. https://doi.org/10.1016/j.rser.2019.05.002.

Lanko I., Hejnic J., Říhová-Ambrožová J., Ferrer I. & Jenicek P. (2021) Digested sludge quality in mesophilic, thermophilic and temperature-phased anaerobic digestion systems, Water, 13, 2839. https://doi.org/10.3390/w13202839.

Li B., Ladipo-Obasa M., Romero A., Wadhawan T., Tobin M., Manning E., Higgins M., Al-Omari A., Murthy S., Novak J. T., Riffat R. & De Clippeleir H. (2021) The inhibitory impact of ammonia on thermally hydrolyzed sludge fed anaerobic digestion, Water Environment Research, 93, 1263–1275. https://doi.org/10.1002/wer.1509. PubMed

Magrova A. & Jenicek P. (2021) Thermal hydrolysis to enhance energetic potential of sewage sludge: a review, Paliva, 13, 59–68. https://doi.org/10.35933/paliva.2021.02.05.

Ngo P. L., Udugama I. A., Gernaey K. V., Young B. R. & Baroutian S. (2021) Mechanisms, status, and challenges of thermal hydrolysis and advanced thermal hydrolysis processes in sewage sludge treatment, Chemosphere, 281, 130890. https://doi.org/10.1016/j.chemosphere.2021.130890. PubMed

Pavez-Jara J. A., Van Lier J. B. & De Kreuk M. K. (2023) Accumulating ammoniacal nitrogen instead of melanoidins determines the anaerobic digestibility of thermally hydrolyzed waste activated sludge, Chemosphere, 332, 138896. https://doi.org/10.1016/j.chemosphere.2023.138896. PubMed

Svennevik O. K., Solheim O. E., Beck G., Sørland G. H., Jonassen K. R., Rus E., Westereng B., Horn S. J., Higgins M. J. & Nilsen P. J. (2019) Effects of post anaerobic digestion thermal hydrolysis on dewaterability and moisture distribution in digestates, Water Science and Technology, 80, 1338–1346. https://doi.org/10.2166/wst.2019.379. PubMed

Svensson K., Kjørlaug O., Higgins M. J., Linjordet R. & Horn S. J. (2018) Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: effect on methane yields, dewaterability and solids reduction, Water Research, 132, 158–166. https://doi.org/10.1016/j.watres.2018.01.008. PubMed

Tiehm A., Nickel K., Zellhorn M. & Neis U. (2001) Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization, Water Research, 35, 2003–2009. https://doi.org/10.1016/S0043-1354(00)00468-1. PubMed

Toutian V., Barjenbruch M., Unger T., Loderer C. & Remy C. (2020) Effect of temperature on biogas yield increase and formation of refractory COD during thermal hydrolysis of waste activated sludge, Water Research, 171, 115383. https://doi.org/10.1016/j.watres.2019.115383. PubMed

Wang X., Lyu T., Dong R. & Wu S. (2022) Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion, Journal of Environmental Management, 301, 113914. https://doi.org/10.1016/j.jenvman.2021.113914. PubMed

Yang Z., Wang W., He Y., Zhang R. & Liu G. (2018) Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions, Renewable Energy, 125, 915–925. https://doi.org/10.1016/j.renene.2018.03.032.

Yang D., Hu C., Dai L., Liu Z., Dong B. & Dai X. (2019) Post-thermal hydrolysis and centrate recirculation for enhancing anaerobic digestion of sewage sludge, Waste Management, 92, 39–48. https://doi.org/10.1016/j.wasman.2019.04.044. PubMed

Zhang G., Yang J., Liu H. & Zhang J. (2009) Sludge ozonation: disintegration, supernatant changes and mechanisms, Bioresource Technology, 100, 1505–1509. https://doi.org/10.1016/j.biortech.2008.08.041. PubMed

Zhang D., Jiang H., Chang J., Sun J., Tu W. & Wang H. (2019) Effect of thermal hydrolysis pretreatment on volatile fatty acids production in sludge acidification and subsequent polyhydroxyalkanoates production, Bioresource Technology, 279, 92–100. https://doi.org/10.1016/j.biortech.2019.01.077. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...