Isolation, identification, and bioactivity evaluation of endophytic fungi from Ruta graveolens: insights into antimicrobial and antioxidant potential

. 2025 Oct 06 ; () : . [epub] 20251006

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41051653

Grantová podpora
2022NSFSC0624 the Sichuan Science and Technology Program

Odkazy

PubMed 41051653
DOI 10.1007/s12223-025-01351-8
PII: 10.1007/s12223-025-01351-8
Knihovny.cz E-zdroje

This study presents a comprehensive investigation of endophytic fungi isolated from Ruta graveolens (Rutaceae), evaluating the bioactivity of their extracts in terms of antimicrobial and antioxidant properties, along with preliminary mycochemical profiles. Twenty-seven isolates were identified using morphological and molecular identification (ITS-rDNA sequencing). Phylogenetic analysis classified them into Alternaria (66.7%, dominant in stems), Chaetomium (25.9%, prevalent in leaves), Achaetomium (3.7%), and Stagonosporopsis (3.7%) genera, demonstrating strong tissue specificity. Antibacterial screening (disk diffusion) of the fungal extracts revealed that 52% (14/27) were active; extracts of S4, S9, S20-2, and L11 showed inhibition against Staphylococcus aureus (inhibition zones, 14.5-15.8 mm at 100 mg/mL), while L5, L10, and L11 extracts exhibited dual activity against both S. aureus and Escherichia coli. Antifungal assays of the extracts identified strains S22, L5, and L12 as effective against phytopathogens Alternaria alternata, Pyricularia grisea, and Curvularia lunata (inhibition rates, 54.2-67.5% at 1 mg/mL). Meanwhile, antioxidant evaluation of the extracts highlighted strain L11 for remarkable DPPH and ABTS radical scavenging (IC50, 8 μg/mL and 5 μg/mL, respectively). Qualitative mycochemical analysis linked ubiquitous coumarins/phenols to broad antibacterial activity. Alkaloids uniquely correlated with E. coli inhibition (L5, L10, L11), while terpenoids/steroids (S9, S20-2) specifically enhanced anti-S. aureus activity. These findings underscore R. graveolens-associated endophytes as potential sources of antimicrobial and antioxidant metabolites, suggesting possible applications for pharmaceutical development and sustainable agricultural applications.

Zobrazit více v PubMed

Adhikari P, Pandey A (2024) Phytochemicals, and antioxidants and antibacterial activities of Taxus wallichiana Zucc. root associated endophytic fungi. Biol 79:1895–1907. https://doi.org/10.1007/s11756-024-01650-4 DOI

Almeida dos Reis JB, Martins do Vale HM, Lorenzi AS (2022) Insights into taxonomic diversity and bioprospecting potential of Cerrado endophytic fungi: a review exploring an unique Brazilian biome and methodological limitations. World J Microbiol Biotechnol 38:202. https://doi.org/10.1007/s11274-022-03386-2

Almustafa HI, Yehia RS (2023) Antioxidant, cytotoxic, and DNA damage protection activities of endophytic fungus Pestalotiopsis neglecta isolated from Ziziphus spina-christi medicinal plant. Microorganisms 11:117. https://doi.org/10.3390/microorganisms11010117 PubMed DOI PMC

Ameen F, Stephenson SL, AlNadhari S, Yassin MA (2021) Isolation, identification and bioactivity analysis of an endophytic fungus isolated from Aloe vera collected from Asir desert, Saudi Arabia. Bioprocess Biosyst Eng 44:1063–1070. https://doi.org/10.1007/s00449-020-02507-1 PubMed DOI

Chen AQ, Mao X, Sun QH, Wei ZX, Li J, You YL, Zhao JQ, Jiang GB, Wu YN, Wang LP, Li YS (2021) Alternaria mycotoxins: an overview of toxicity, metabolism, and analysis in food. J Agric Food Chem 69:7817–7830. https://doi.org/10.1021/acs.jafc.1c03007 PubMed DOI

Chou C, Castilla N, Hadi B, Tanaka T, Chiba S, Sato I (2020) Rice blast management in Cambodian rice fields using Trichoderma harzianum and a resistant variety. Crop Prot 135:104864. https://doi.org/10.1016/j.cropro.2019.104864 DOI

Coimbra AT, Ferreira S, Duarte AP (2020) Genus Ruta: a natural source of high value products with biological and pharmacological properties. J Ethnopharmacol 260:113076. https://doi.org/10.1016/j.jep.2020.113076 PubMed DOI

Cosme P, Rodríguez AB, Espino J, Garrido M (2020) Plant phenolics: bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 9:1263. https://doi.org/10.3390/antiox9121263 DOI PMC

da Silva AA, Polonio JC, Bulla AM, Polli AD, Castro JC, Soares LC, de Oliveira-Junior VA, Pimenta Vicentini VE, Braz de Oliveira AJ, Goncalves JE, Correia Goncalves RA, Azevedo JL, de Abreu-Filho BA, Pamphile JA (2022) Antimicrobial and antioxidant activities of secondary metabolites from endophytic fungus Botryosphaeria fabicerciana (MGN23-3) associated to Morus nigra L. Nat Prod Res 36:3158–3162. https://doi.org/10.1080/14786419.2021.1947272 PubMed DOI

Dwibedi V, Rath SK, Jain S, Martinez-Argueta N, Prakash R, Saxena S, Rios-Solis L (2023) Key insights into secondary metabolites from various Chaetomium species. Appl Microbiol Biotechnol 107:1077–1093. https://doi.org/10.1007/s00253-023-12365-y PubMed DOI PMC

Fan YZ, Shi BB (2024) Endophytic fungi from the four staple crops and their secondary metabolites. Int J Mol Sci 25:6057. https://doi.org/10.3390/ijms25116057 PubMed DOI PMC

Fan M, Chen X, Luo X, Zhang H, Liu Y, Zhang Y, Wu J, Zhao C, Zhao P (2020) Diversity of endophytic fungi from the leaves of Vaccinium dunalianum. Lett Appl Microbiol 71:479–489. https://doi.org/10.1111/lam.13345 PubMed DOI

Farouk HM, Attia EZ, Shaban GM, Abdelmohsen UR, El-Katatny MmH (2024) Antimicrobial secondary metabolites and antioxidant activities of fungal endophytes associated with Ziziphus spina-christi (L.) Desf. (Nabq) leaves. Nat Prod Res 1–5. https://doi.org/10.1080/14786419.2024.2340761

Fernando K, Reddy P, Spangenberg GC, Rochfort SJ, Guthridge KM (2022) Metabolic potential of Epichloë endophytes for host grass fungal disease resistance. Microorganisms 10:64. https://doi.org/10.3390/microorganisms10010064 DOI

Gao J, Fu JX, Jiao J, Gai QY, Zhang ZY, Wang XQ, Fu YJ (2025) An endophytic fungus Dichotomopilus funicola J-219 for the control of pigeon pea root rot caused by Rhizoctonia solani and its role in regulating the secondary metabolic defense response. Physiol Mol Plant Pathol 137:102613. https://doi.org/10.1016/j.pmpp.2025.102613 DOI

Gioia L, D’Errico G, Sinno M, Ranesi M, Woo SL, Vinale F (2020) A survey of endophytic fungi associated with high-risk plants imported for ornamental purposes. Agriculture-Basel 10:643. https://doi.org/10.3390/agriculture10120643 DOI

Goda MS, El-Kattan N, Abdel-Azeem MA, Allam KAM, Badr JM, Nassar NA, Almalki AJ, Alharbi M, Elhady SS, Eltamany EE (2023) Antimicrobial potential of different isolates of Chaetomium globosum combined with liquid chromatography tandem mass spectrometry chemical profiling. Biomolecules 13:1683. https://doi.org/10.3390/biom13121683 PubMed DOI PMC

Hanumaiah RTD, Hazarika PR, Guha P, Chowdhury CD, Saha S, Alurappa R, Hanumanthaiah P (2023) Studies on the biodiversity of endophytic fungi from Ruta graveolens and screening for their antimicrobial activities. Malays J Microbiol 19:415–420. https://doi.org/10.21161/mjm.221409 DOI

Hilal B, Khan MM, Fariduddin Q (2024) Recent advancements in deciphering the therapeutic properties of plant secondary metabolites: phenolics, terpenes, and alkaloids. Plant Physiol Biochem 211:108674. https://doi.org/10.1016/j.plaphy.2024.108674 PubMed DOI

Ji X, Xia Y, Zhang H, Cui JL (2022) The microscopic mechanism between endophytic fungi and host plants: from recognition to building stable mutually beneficial relationships. Microbiol Res 261:127056. https://doi.org/10.1016/j.micres.2022.127056 PubMed DOI

Kaur M, Goel M, Mishra RC, Lahane V, Yadav AK, Barrow CJ (2023) Characterization of the red biochromes produced by the endophytic fungus Monascus purpureus CPEF02 with antimicrobial and antioxidant activities. Fermentation-Basel 9:328. https://doi.org/10.3390/fermentation9040328 DOI

Košćak L, Lamovšek J, Đermić E, Prgomet I, Godena S (2023) Microbial and plant-based compounds as alternatives for the control of phytopathogenic bacteria. Horticulturae 9:1124. https://doi.org/10.3390/horticulturae9101124 DOI

Kumar V, Prasher IB (2024) Phytochemical analysis and antioxidant activity of endophytic fungi isolated from Dillenia indica Linn. Appl Biochem Biotechnol 196:332–349. https://doi.org/10.1007/s12010-023-04498-7 PubMed DOI

Liao CF, Doilom M, Jeewon R, Hyde KD, Manawasinghe IS, Chethana KWT, Balasuriya A, Thakshila SAD, Luo M, Mapook A, Htet ZH, Koodalugodaarachchi V, Wijekoon N, Saxena RK, Senanayake IC, Kularathnage ND, Alrefaei AF, Dong W (2025) Challenges and update on fungal endophytes: classification, definition, diversity, ecology, evolution and functions. Fungal Divers 131:301–367. https://doi.org/10.1007/s13225-025-00550-5 DOI

Lu JM, Wang J, Zhang JH, Zhu YC, Qin LP, Zhu B (2023) Diversity of culturable endophytic fungi in Crocus sativus and their correlation with crocin content. Curr Microbiol 80:73. https://doi.org/10.1007/s00284-023-03177-4 PubMed DOI

Luo P, Feng X, Liu S, Jiang YP (2024) Traditional uses, phytochemistry, pharmacology and toxicology of Ruta graveolens L.: a critical review and future perspectives. Drug des Dev Ther 18:6459–6485. https://doi.org/10.2147/dddt.S494417 DOI

Maggini V, Bettini PP, Fani R, Firenzuoli F, Bogani P (2023) Echinacea purpurea microbiota: bacterial-fungal interactions and the interplay with host and non-host plant species in in vitro dual culture. Plant Biol 25:246–256. https://doi.org/10.1111/plb.13495 PubMed DOI

Mir MA, Bashir N, Alfaify A, Oteef MDY (2020) GC-MS analysis of Myrtus communis extract and its antibacterial activity against Gram-positive bacteria. BMC Complement Med Ther 20:86. https://doi.org/10.1186/s12906-020-2863-3 PubMed DOI PMC

Nickerson MN, Moore LP, U’Ren JM (2023) The impact of polyphenolic compounds on the in vitro growth of oak-associated foliar endophytic and saprotrophic fungi. Fungal Ecol 62:101226. https://doi.org/10.1016/j.funeco.2023.101226 DOI

Nortjie E, Basitere M, Moyo D, Nyamukamba P (2022) Extraction methods, quantitative and qualitative phytochemical screening of medicinal plants for antimicrobial textiles: a review. Plants 11:2011. https://doi.org/10.3390/plants11152011 PubMed DOI PMC

Pancher M, Ceol M, Corneo PE, Longa CMO, Yousaf S, Pertot I, Campisano A (2012) Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Appl Environ Microbiol 78:4308–4317. https://doi.org/10.1128/aem.07655-11 PubMed DOI PMC

Panwar A, Manna S, Sahini G, Kaushik V, Kumar M, Govarthanan M (2025) The legacy of endophytes for the formation of bioactive agents, pigments, biofertilizers, nanoparticles and bioremediation of environment. World J Microbiol Biotechnol 41:52. https://doi.org/10.1007/s11274-025-04265-2 PubMed DOI

Perumal S, Radhakrishnan R, Sathasivam R, Arun M, Song J, Park SU (2023) Endophytes: a vital source of medicine-a review. Trop J Pharm Res 22:1133–1142. https://doi.org/10.4314/tjpr.v22i5.28 DOI

Prajapati C, Rai SN, Singh AK, Chopade BA, Singh Y, Singh SK, Haque S, Prieto MA, Ashraf GM (2025) An update of fungal endophyte diversity and strategies for augmenting therapeutic potential of their potent metabolites: recent advancement. Appl Biochem Biotechnol 197:2799–2866. https://doi.org/10.1007/s12010-024-05098-9 PubMed DOI PMC

Salazar-Cerezo S, Martinez-Montiel N, Cruz-Lopez MdC, Martinez-Contreras RD (2018) Fungal diversity and community composition of culturable fungi in Stanhopea trigrina cast gibberellin producers. Front Microbiol 9:612. https://doi.org/10.3389/fmicb.2018.00612 PubMed DOI PMC

Salwan R, Rana A, Saini R, Sharma A, Sharma M, Sharma V (2023) Diversity analysis of endophytes with antimicrobial and antioxidant potential from Viola odorata: an endemic plant species of the Himalayas. Braz J Microbiol 54:2361–2374. https://doi.org/10.1007/s42770-023-01010-5 PubMed DOI PMC

Seekham N, Kaewsalong N, Jantasorn A, Dethoup T (2024) Field biocontrol efficacy of Trichoderma spp. in fresh and dry formulations against rice blast and brown spot diseases and yield effect. Eur J Plant Pathol 170:1–13. https://doi.org/10.1007/s10658-024-02854-9 DOI

Shamim AHM, Mondol MAM, Hossain M, Shovo TI, Uddin M, Nur-e-Alam M, Alam I, Alharbi HA, Rahman AFMM (2024) New antibacterial penicimenolide G with unusual 12-membered resorcylic acid lactone ring isolated from endophytic fungus Aspergillus giganteus. Phytochem Lett 62:18–23. https://doi.org/10.1016/j.phytol.2024.06.003 DOI

Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216.  https://doi.org/10.1126/science.8097061

Su JH, Wang MQ, Li YZ, Lin YS, Gu JY, Zhu LP, Yang WQ, Jiang SQ, Zhao ZX, Sun ZH (2022) Rare cytochalasans isolated from the mangrove endophytic fungus Xylaria arbuscula. Fitoterapia 157:105124. https://doi.org/10.1016/j.fitote.2022.105124 PubMed DOI

Tamariz-Angeles C, Huaman GD, Palacios-Robles E, Olivera-Gonzales P, Castaneda-Barreto A (2021) Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal polluted soil from Callejon de Huaylas (Ancash, Peru). Microbiol Res 250:126811. https://doi.org/10.1016/j.micres.2021.126811 PubMed DOI

Wijesekara T, Xu B (2023) Health-promoting effects of bioactive compounds from plant endophytic fungi. J Fungi 9:997. https://doi.org/10.3390/jof9100997 DOI

Yang R, Du WH, Yuan H, Qin TH, He RX, Ma YN, Du HY (2020) Synthesis and biological evaluation of 2-phenyl-4-aminoquinolines as potential antifungal agents. Mol Divers 24:1065–1075. https://doi.org/10.1007/s11030-019-10012-1 PubMed DOI

Yang R, Li ZL, Xie JL, Liu JC, Qin TH, Liu JD, Du HY, Ye HY (2021) 4-aminoquinolines bearing a 1,3-benzodioxole moiety: synthesis and biological evaluation as potential antifungal agents. Chem Biodivers 18:e2100106. https://doi.org/10.1002/cbdv.202100106 PubMed DOI

Yao YQ, Lan K, Huang RS, Wu XK (2023) Tissue-specificity and pathogen-resistant function in vitro of endophytic fungal microbiome harbored in Sophora tonkinensis from wild type. Guihaia 43:1182–1192. https://doi.org/10.11931/guihaia.gxzw202203092

Yin YH, Tan Q, Wu JY, Chen T, Yang WC, She ZG, Wang B (2023) The polyketides with antimicrobial activities from a mangrove endophytic fungus Trichoderma lentiforme ML-P8-2. Mar Drugs 21:566. https://doi.org/10.3390/md21110566 PubMed DOI PMC

Zaynab M, Khan J, Al-Yahyai R, Sadder M, Li S (2024) Toxicity of coumarins in plant defense against pathogens. Toxicon 250:108118. https://doi.org/10.1016/j.toxicon.2024.108118 PubMed DOI

Zhai BC, Hao QY, Wang MF, Luo ZQ, Yang R, Yang J, Cao YQ (2024) Discovery of new 4-aminoquinoline derivatives containing an amine or hydroxamic acid terminal as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Chem 153:107954. https://doi.org/10.1016/j.bioorg.2024.107954 PubMed DOI

Zhang X, Xu ZY, Ma JK, Zhou DD, Xu J (2021) Phylogenetic diversity, antimicrobial and antioxidant potential and identification of bioactive compounds from culturable endophytic fungi associated with mangrove Bruguiera sexangula (Lour.) Poir. Curr Microbiol 78:479–489. https://doi.org/10.1007/s00284-020-02314-7 PubMed DOI

Zheng ZY, Chai ST, Chen J, Yang H, Chang JY, Yang Ge (2022) Isolation and identification of flavonoid-producing endophytic fungi from Loranthus tanakae Franch. & Sav that exhibit antioxidant and antibacterial activities. J Appl Microbiol 133:1892–1904. https://doi.org/10.1111/jam.15696 PubMed DOI

Zhu XX, Liu WQ, Shi ZX, Zhu HY, Fan SQ, Zhang J, Liu WY, Xu LJ, Ren QJ, Feng F, Xu J (2024) Meroterpenoids with divers’ rings systems from Phyllosticta capitalensis and their anti-inflammatory activity. Phytochemistry 217:113918. https://doi.org/10.1016/j.phytochem.2023.113918 PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...