The effects of bipolar disorder granule cell hyperexcitability and lithium therapy on pattern separation in a computational model of the dentate gyrus

. 2025 Oct 07 ; 15 (1) : 385. [epub] 20251007

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41052989
Odkazy

PubMed 41052989
PubMed Central PMC12501374
DOI 10.1038/s41398-025-03559-1
PII: 10.1038/s41398-025-03559-1
Knihovny.cz E-zdroje

Induced pluripotent stem cell (iPSC) derived hippocampal dentate granule cell-like neurons from individuals with bipolar disorder (BD) are hyperexcitable and more spontaneously active relative to healthy control (HC) neurons. Furthermore, these abnormalities are normalised after the application of lithium in neurons derived from clinical lithium responders (LR) only. How these abnormalities impact hippocampal microcircuit computation is not understood. We aimed to investigate the impacts of BD-associated abnormal granule cell (GC) activity on pattern separation (PS) using a computational model of the dentate gyrus. We used parameter optimization to fit the parameters of biophysically realistic granule cell (GC) models to electrophysiological data from iPSC GCs from patients with BD. These cellular models were incorporated into dentate gyrus networks to assess impacts on PS using an adapted spatiotemporal task. Relationships between BD, lithium and spontaneous activity were analysed using a linear mixed-effects model. Lithium and BD negatively impacted PS, consistent with clinical reports of cognitive slowing and memory impairment during lithium therapy. By normalising spontaneous activity levels, lithium improved PS performance in LRs only. Improvements in PS after lithium therapy in LRs may therefore be attributable to the normalisation of spontaneous activity levels, rather than reductions in GC intrinsic excitability as we hypothesised. Our results mirror previous research demonstrating that mnemonic discrimination improves after lithium therapy in lithium responders only, supporting a hypothesised link between behavioural mnemonic discrimination and dentate gyrus PS. Our work can be expanded to also consider the effects of lithium-induced neurogenesis on PS.

Zobrazit více v PubMed

Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet. 2016;387:1561–72. 10.1016/S0140-6736(15)00241-X PubMed

Atre-Vaidya N, Taylor MA, Seidenberg M, Reed R, Perrine A, Glick-Oberwise F, et al. Cognitive deficits, psychopathology, and psychosocial functioning in bipolar mood disorder. Cogn Behav Neurol. 1998;11:120. PubMed

Sanchez-Moreno J, Martinez-Aran A, Tabarés-Seisdedos R, Torrent C, Vieta E. Functioning and disability in bipolar disorder: an extensive review. Psychother Psychosom. 2009;78:285–97. 10.1159/000228249 PubMed

Solé B, Jiménez E, Torrent C, Reinares M, Bonnin CdM, Torres I, et al. Cognitive impairment in bipolar disorder: treatment and prevention strategies. Int J Neuropsychopharmacol. 2017;20:670–80. 10.1093/ijnp/pyx032 PubMed PMC

Bourne C, Aydemir Ö, Balanzá-Martinez V, Bora E, Brissos S, Cavanagh JTO, et al. Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: an individual patient data meta-analysis. Acta Psychiatr Scand. 2013;128:149–62. 10.1111/acps.12133 PubMed

Kurtz MM, Gerraty RT. A meta-analytic investigation of neurocognitive deficits in bipolar illness: profile and effects of clinical state. Neuropsychology. 2009;23:551–62. 10.1037/a0016277 PubMed PMC

Arts B, Jabben N, Krabbendam L, van Os J. Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychol Med. 2008;38:771–85. 10.1017/S0033291707001675 PubMed

Dempsey RC, Gooding PA, Jones SH. Assessing the specificity of autobiographical memory in individuals at a trait-based vulnerability to bipolar disorder using a sentence completion task. Memory. 2014;22:222–31. 10.1080/09658211.2013.778289 PubMed

Boulanger M, Lejeune A, Blairy S. Overgenerality memory style for past and future events and emotions related in bipolar disorder. What are the links with problem solving and interpersonal relationships? Psychiatry Res. 2013;210:863–70. 10.1016/j.psychres.2013.06.029 PubMed

Mowlds W, Shannon C, McCusker CG, Meenagh C, Robinson D, Wilson A, et al. Autobiographical memory specificity, depression, and trauma in bipolar disorder. Br J Clin Psychol. 2010;49:217–33. 10.1348/014466509X454868 PubMed

Getz GE, Shear PK, Strakowski SM. Facial affect recognition deficits in bipolar disorder. J Int Neuropsychol Soc. 2003;9:623–32. 10.1017/S1355617703940021 PubMed

Benito A, Lahera G, Herrera S, Muncharaz R, Benito G, Frenández-Liria A, et al. Deficits in recognition, identification, and discrimination of facial emotions in patients with bipolar disorder. Braz J Psychiatry. 2013;35:435–8. 10.1590/1516-4446-2013-1086 PubMed

Penfield W, Milner B. Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiatry. 1958;79:475–97. 10.1001/archneurpsyc.1958.02340050003001 PubMed

Kirwan CB, Bayley PJ, Galván VV, Squire LR. Detailed recollection of remote autobiographical memory after damage to the medial temporal lobe. Proc Natl Acad Sci USA. 2008;105:2676–80. 10.1073/pnas.0712155105 PubMed PMC

Söderlund H, Moscovitch M, Kumar N, Mandic M, Levine B. As time goes by: Hippocampal connectivity changes with remoteness of autobiographical memory retrieval. Hippocampus. 2012;22:670–9. 10.1002/hipo.20927 PubMed

Becker S, Wojtowicz JM. A model of hippocampal neurogenesis in memory and mood disorders. Trends Cogn Sci. 2007;11:70–76. 10.1016/j.tics.2006.10.013 PubMed

Wang J, Tambini A, Lapate RC. The tie that binds: temporal coding and adaptive emotion. Trends Cogn Sci. 2022;26:1103–18. 10.1016/j.tics.2022.09.005 PubMed

Frey BN, Andreazza AC, Nery FG, Martins MR, Quevedo J, Soares JC, et al. The role of hippocampus in the pathophysiology of bipolar disorder. Behav Pharmacol. 2007;18:419–30. 10.1097/FBP.0b013e3282df3cde PubMed

Konradi C, Zimmerman EI, Yang CK, Lohmann KM, Gresch P, Pantazopoulos H, et al. Hippocampal interneurons in bipolar disorder. Arch Gen Psychiatry. 2010;68:340. 10.1001/archgenpsychiatry.2010.175 PubMed PMC

Pantazopoulos H, Lange N, Baldessarini RJ, Berretta S. Parvalbumin neurons in the entorhinal cortex of subjects diagnosed with bipolar disorder or schizophrenia. Biol Psychiatry. 2007;61:640–52. 10.1016/j.biopsych.2006.04.026 PubMed PMC

Dowlatshahi D, MacQueen G, Wang J-F, Chen B. Increased hippocampal supragranular Timm staining in subjects with bipolar disorder. Neuroreport. 2000;11:3775–8. 10.1097/00001756-200011270-00036 PubMed

Chen C-H, Suckling J, Lennox BR, Ooi C, Bullmore ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord. 2011;13:1–15. 10.1111/j.1399-5618.2011.00893.x PubMed

Hajek T, Kopecek M, Höschl C, Alda M. Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. J Psychiatry Neurosci. 2012;37:333–43. 10.1503/jpn.110143 PubMed PMC

Hajek T, Cullis J, Novak T, Kopesek M, Höschl C, Blagdon R, et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment: Hippocampus, illness burden, and lithium. Bipolar Disord. 2012;14:261–70. 10.1111/j.1399-5618.2012.01013.x PubMed PMC

Mertens J, Wang Q, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:95–99. 10.1038/nature15526 PubMed PMC

Stern S, Santos R, Marchetto MC, Mendes APD, Rouleau GA, Biesmans S, et al. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Mol Psychiatry. 2018;23:1453–65. 10.1038/mp.2016.260 PubMed PMC

Stern S, Sarkar A, Stern T, Mei A, Mendes APD, Stern Y, et al. Mechanisms underlying the hyperexcitability of CA3 and dentate gyrus hippocampal neurons derived from patients with bipolar disorder. Biol Psychiatry. 2020;88:139–49. 10.1016/j.biopsych.2019.09.018 PubMed PMC

Stern S, Sarkar A, Galor D, Stern T, Mei A, Stern Y, et al. A physiological instability displayed in hippocampal neurons derived from lithium-nonresponsive bipolar disorder patients. Biol Psychiatry. 2020;88:150–8. 10.1016/j.biopsych.2020.01.020 PubMed PMC

Wigström H. A model of a neural network with recurrent inhibition. Kybernetik. 1974;16:103–12. 10.1007/BF00271633 PubMed

Espinoza C, Guzman SJ, Zhang X, Jonas P. Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus. Nat Commun. 2018;9:4605. 10.1038/s41467-018-06899-3 PubMed PMC

Engin E, Zarnowska ED, Benke D, Tsvetkov E, Sigal M, Keist R, et al. Tonic inhibitory control of dentate gyrus granule cells by α5-containing GABAA receptors reduces memory interference. J Neurosci. 2015;35:13698–712. 10.1523/JNEUROSCI.1370-15.2015 PubMed PMC

Guzman SJ, Schlögl A, Espinoza C, Zhang X, Suter BA, Jonas P. How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network. Nat Comput Sci. 2021;1:830–42. 10.1038/s43588-021-00157-1 PubMed

Neunuebel JP, Knierim JJ. Spatial firing correlates of physiologically distinct cell types of the rat dentate gyrus. J Neurosci. 2012;32:3848–58. 10.1523/JNEUROSCI.6038-11.2012 PubMed PMC

Neunuebel JP, Knierim JJ. CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and dentate gyrus pattern separation. Neuron. 2014;81:416–27. 10.1016/j.neuron.2013.11.017 PubMed PMC

Madar AD, Ewell LA, Jones MV. Temporal pattern separation in hippocampal neurons through multiplexed neural codes. PLOS Comput Biol. 2019;15:e1006932. 10.1371/journal.pcbi.1006932 PubMed PMC

Madar AD, Ewell LA, Jones MV. Pattern separation of spiketrains in hippocampal neurons. Sci Rep. 2019;9:5282. 10.1038/s41598-019-41503-8 PubMed PMC

Singh S, Becker S, Trappenberg T, Nunes A. Granule cells perform frequency‐dependent pattern separation in a computational model of the dentate gyrus. Hippocampus. 2023;34:hipo.23585. 10.1002/hipo.23585 PubMed

Berron D, Schutze H, Maass A, Cardenas-Blanco A, Kuijf HJ, Kumaran D, et al. Strong evidence for pattern separation in human dentate gyrus. J Neurosci. 2016;36:7569–79. 10.1523/JNEUROSCI.0518-16.2016 PubMed PMC

Santoro A. Reassessing pattern separation in the dentate gyrus. Front Behav Neurosci. 2013;7:96. PubMed PMC

Madanlal D, Guinard C, Nuñez VP, Becker S, Garnham J, Khayachi A, et al. A pilot study examining the impact of lithium treatment and responsiveness on mnemonic discrimination in bipolar disorder. J Affect Disord. 2024;351:49–57. 10.1016/j.jad.2024.01.146 PubMed

Khayachi A, Abuzgaya M, Liu Y, Jiao C, Dejgaard K, Schorova L, et al. Akt and AMPK activators rescue hyperexcitability in neurons from patients with bipolar disorder. EBioMedicine. 2024;104:105161. 10.1016/j.ebiom.2024.105161 PubMed PMC

Aradi I, Holmes WR. Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci. 1999;6:215–35. PubMed

Yim MY, Hanuschkin A, Wolfart J. Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus. 2015;25:297–308. 10.1002/hipo.22373 PubMed

Santhakumar V, Aradi I, Soltesz I. Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol. 2005;93:437–53. 10.1152/jn.00777.2004 PubMed

Carnevale NT, Hines ML. The NEURON book. Cambridge University Press; United Kingdom 2006.

Kochenderfer MJ, Wheeler TA. Algorithms for optimization. The MIT Press; Cambridge, Massachusetts, USA 2019.

Myers CE, Scharfman HE. A role for hilar cells in pattern separation in the dentate gyrus: a computational approach. Hippocampus. 2009;19:321–37. 10.1002/hipo.20516 PubMed PMC

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48. 10.18637/jss.v067.i01

Treves A, Rolls ET. Computational analysis of the role of the hippocampus in memory. Hippocampus. 1994;4:374–91. 10.1002/hipo.450040319 PubMed

O’Reilly RC, McClelland JL. Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus. 1994;4:661–82. 10.1002/hipo.450040605 PubMed

Kanerva P. Sparse distributed memory. The MIT Press; Cambridge, Massachusetts, USA. 2003.

Chavlis S, Petrantonakis PC, Poirazi P. Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity. Hippocampus. 2017;27:89–110. 10.1002/hipo.22675 PubMed PMC

Kim S-Y, Lim W. Dynamical origin for winner-take-all competition in a biological network of the hippocampal dentate gyrus. Phys Rev E. 2022;105:014418. 10.1103/PhysRevE.105.014418 PubMed

GoodSmith D, Chen X, Wang C, Kim SH, Song H, Burgalossi A, et al. Spatial representations of granule cells and mossy cells of the dentate gyrus. Neuron. 2017;93:677–90.e5. 10.1016/j.neuron.2016.12.026 PubMed PMC

Danielson NB, Turi GF, Ladow M, Chavlis S, Petrantonakis PC, Poirazi P, et al. In vivo imaging of dentate gyrus mossy cells in behaving mice. Neuron. 2017;93:552–9.e4. 10.1016/j.neuron.2016.12.019 PubMed PMC

Ben-Ari Y, Gaiarsa J-L, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev. 2007;87:1215–84. 10.1152/physrev.00017.2006 PubMed

Sipilä ST, Huttu K, Voipio J, Kaila K. Intrinsic bursting of immature CA3 pyramidal neurons and consequent giant depolarizing potentials are driven by a persistent Na PubMed

Kerschensteiner D. Spontaneous network activity and synaptic development. Neuroscientist. 2014;20:272–90. 10.1177/1073858413510044 PubMed PMC

Blankenship AG, Feller MB. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci. 2010;11:18–29. 10.1038/nrn2759 PubMed PMC

Sun H, Yan R, Hua L, Xia Y, Chen Z, Huang Y, et al. Abnormal stability of spontaneous neuronal activity as a predictor of diagnosis conversion from major depressive disorder to bipolar disorder. J Psychiatr Res. 2024;171:60–68. 10.1016/j.jpsychires.2024.01.028 PubMed

Fountoulakis KN, Vieta E, Bouras C, Notaridis G, Giannakopoulos P, et al. A systematic review of existing data on long-term lithium therapy: neuroprotective or neurotoxic? Int J Neuropsychopharmacol. 2008;11:269–87. 10.1017/S1461145707007821 PubMed

Honig A, Arts BMG, Ponds RWHM, Riedel WJ. Lithium induced cognitive side-effects in bipolar disorder: a qualitative analysis and implications for daily practice. Int Clin Psychopharmacol. 1999;14:167. PubMed

Burdick KE, Millett CE, Russo M, Alda M, Alliey-Rodriguez N, Anand A, et al. The association between lithium use and neurocognitive performance in patients with bipolar disorder. Neuropsychopharmacology. 2020;45:1743–9. 10.1038/s41386-020-0683-2 PubMed PMC

Cipriani A, Pretty H, Hawton K, Geddes JR. Lithium in the prevention of suicidal behavior and all-cause mortality in patients with mood disorders: a systematic review of randomized trials. Am J Psychiatry. 2005;162:1805–19. 10.1176/appi.ajp.162.10.1805 PubMed

BALANCE investigators and collaborators, Geddes JR, Goodwin GM, Rendell J, Azorin J, Cipriani A, et al. Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): a randomised open-label trial. Lancet. 2010;375:385–95. 10.1016/S0140-6736(09)61828-6 PubMed

Baker S, Vieweg P, Gao F, Gilboa A, Wolbers T, Black SE, et al. The human dentate gyrus plays a necessary role in discriminating new memories. Curr Biol. 2016;26:2629–34. 10.1016/j.cub.2016.07.081 PubMed

Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK. Enhancement of hippocampal neurogenesis by lithium. J Neurochem. 2000;75:1729–34. 10.1046/j.1471-4159.2000.0751729.x PubMed

Palmos AB, Duarte RRR, Smeeth DM, Hedges EC, Nixon DF, Thuret S, et al. Lithium treatment and human hippocampal neurogenesis. Transl Psychiatry. 2021;11:1–8. 10.1038/s41398-021-01695-y PubMed PMC

Swan AA, Clutton JA, Chary PK, Cook SG, Liu GG, Drew MR. Characterization of the role of adult neurogenesis in touch-screen discrimination learning: Neurogenesis and discrimination learning. Hippocampus. 2014;24:1581–91. 10.1002/hipo.22337 PubMed PMC

Tronel S, Belnoue L, Grosjean N, Revest J, Piazza P, Koehl M, et al. Adult-born neurons are necessary for extended contextual discrimination. Hippocampus. 2012;22:292–8. 10.1002/hipo.20895 PubMed

Luu P, Sill OC, Gao L, Becker S, Wojtowicz JM, Smith DM. The role of adult hippocampal neurogenesis in reducing interference. Behav Neurosci. 2012;126:381–91. 10.1037/a0028252 PubMed PMC

Nunes A, Singh S, Allman J, Becker S, Ortiz A, Trappenberg T, et al. A critical evaluation of dynamical systems models of bipolar disorder. Transl Psychiatry. 2022;12:416. 10.1038/s41398-022-02194-4 PubMed PMC

Sunkin S. Cell types database documentation: electrophysiology overview [white paper]. Allen Institute. 2017. https://community.brain-map.org/uploads/short-url/veJ9z4lwAJoxv4Rx23b7KpnUYEp.pdf.

Marín-Burgin A, Mongiat LA, Pardi MB, Schinder AF. Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science. 2012;335:1238–42. 10.1126/science.1214956 PubMed PMC

Groisman AI, Yang SM, Schinder AF. Differential coupling of adult-born granule cells to parvalbumin and somatostatin interneurons. Cell Rep. 2020;30:202–14.e4. 10.1016/j.celrep.2019.12.005 PubMed PMC

Temprana SG, Mongiat LA, Yang SM, Trinchero MF, Alvarez DD, Kropff E, et al. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron. 2015;85:116–30. 10.1016/j.neuron.2014.11.023 PubMed PMC

Toni N, Schinder AF. Maturation and functional integration of new granule cells into the adult hippocampus. Cold Spring Harb Perspect Biol. 2016;8:a018903. 10.1101/cshperspect.a018903 PubMed PMC

Finnegan R, Becker S. Neurogenesis paradoxically decreases both pattern separation and memory interference. Front Syst Neurosci. 2015;9:136. 10.3389/fnsys.2015.00136 PubMed PMC

Williams R, Ryves WJ, Dalton EC, Eickholt B, Shaltiel G, Agam G, et al. A molecular cell biology of lithium. Biochem Soc Trans. 2004;32:799–802. 10.1042/BST0320799 PubMed

Kim HJ, Thayer SA. Lithium increases synapse formation between hippocampal neurons by depleting phosphoinositides. Mol Pharmacol. 2009;75:1021–30. 10.1124/mol.108.052357 PubMed PMC

McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995;102:419–57. 10.1037/0033-295X.102.3.419 PubMed

Borzello M, Ramirez S, Treves A, Lee I, Scharfman H, Stark C, et al. Assessments of dentate gyrus function: discoveries and debates. Nat Rev Neurosci. 2023;24:502–17. 10.1038/s41583-023-00710-z PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...