The effects of bipolar disorder granule cell hyperexcitability and lithium therapy on pattern separation in a computational model of the dentate gyrus
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
41052989
PubMed Central
PMC12501374
DOI
10.1038/s41398-025-03559-1
PII: 10.1038/s41398-025-03559-1
Knihovny.cz E-zdroje
- MeSH
- antimanika * farmakologie MeSH
- bipolární porucha * farmakoterapie patofyziologie MeSH
- dospělí MeSH
- gyrus dentatus * patofyziologie účinky léků MeSH
- indukované pluripotentní kmenové buňky účinky léků MeSH
- lidé MeSH
- lithium * farmakologie MeSH
- modely neurologické * MeSH
- neurony * účinky léků fyziologie MeSH
- počítačová simulace MeSH
- sloučeniny lithia * farmakologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antimanika * MeSH
- lithium * MeSH
- sloučeniny lithia * MeSH
Induced pluripotent stem cell (iPSC) derived hippocampal dentate granule cell-like neurons from individuals with bipolar disorder (BD) are hyperexcitable and more spontaneously active relative to healthy control (HC) neurons. Furthermore, these abnormalities are normalised after the application of lithium in neurons derived from clinical lithium responders (LR) only. How these abnormalities impact hippocampal microcircuit computation is not understood. We aimed to investigate the impacts of BD-associated abnormal granule cell (GC) activity on pattern separation (PS) using a computational model of the dentate gyrus. We used parameter optimization to fit the parameters of biophysically realistic granule cell (GC) models to electrophysiological data from iPSC GCs from patients with BD. These cellular models were incorporated into dentate gyrus networks to assess impacts on PS using an adapted spatiotemporal task. Relationships between BD, lithium and spontaneous activity were analysed using a linear mixed-effects model. Lithium and BD negatively impacted PS, consistent with clinical reports of cognitive slowing and memory impairment during lithium therapy. By normalising spontaneous activity levels, lithium improved PS performance in LRs only. Improvements in PS after lithium therapy in LRs may therefore be attributable to the normalisation of spontaneous activity levels, rather than reductions in GC intrinsic excitability as we hypothesised. Our results mirror previous research demonstrating that mnemonic discrimination improves after lithium therapy in lithium responders only, supporting a hypothesised link between behavioural mnemonic discrimination and dentate gyrus PS. Our work can be expanded to also consider the effects of lithium-induced neurogenesis on PS.
Department of Psychiatry Dalhousie University Halifax NS Canada
Department of Psychology Neuroscience and Behaviour McMaster University Hamilton ON Canada
Faculty of Computer Science Dalhousie University Halifax NS Canada
National Institute of Mental Health Klecany Czech Republic
Sagol Department of Neurobiology Faculty of Natural Sciences University of Haifa Haifa Israel
Zobrazit více v PubMed
Grande I, Berk M, Birmaher B, Vieta E. Bipolar disorder. Lancet. 2016;387:1561–72. 10.1016/S0140-6736(15)00241-X PubMed
Atre-Vaidya N, Taylor MA, Seidenberg M, Reed R, Perrine A, Glick-Oberwise F, et al. Cognitive deficits, psychopathology, and psychosocial functioning in bipolar mood disorder. Cogn Behav Neurol. 1998;11:120. PubMed
Sanchez-Moreno J, Martinez-Aran A, Tabarés-Seisdedos R, Torrent C, Vieta E. Functioning and disability in bipolar disorder: an extensive review. Psychother Psychosom. 2009;78:285–97. 10.1159/000228249 PubMed
Solé B, Jiménez E, Torrent C, Reinares M, Bonnin CdM, Torres I, et al. Cognitive impairment in bipolar disorder: treatment and prevention strategies. Int J Neuropsychopharmacol. 2017;20:670–80. 10.1093/ijnp/pyx032 PubMed PMC
Bourne C, Aydemir Ö, Balanzá-Martinez V, Bora E, Brissos S, Cavanagh JTO, et al. Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: an individual patient data meta-analysis. Acta Psychiatr Scand. 2013;128:149–62. 10.1111/acps.12133 PubMed
Kurtz MM, Gerraty RT. A meta-analytic investigation of neurocognitive deficits in bipolar illness: profile and effects of clinical state. Neuropsychology. 2009;23:551–62. 10.1037/a0016277 PubMed PMC
Arts B, Jabben N, Krabbendam L, van Os J. Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychol Med. 2008;38:771–85. 10.1017/S0033291707001675 PubMed
Dempsey RC, Gooding PA, Jones SH. Assessing the specificity of autobiographical memory in individuals at a trait-based vulnerability to bipolar disorder using a sentence completion task. Memory. 2014;22:222–31. 10.1080/09658211.2013.778289 PubMed
Boulanger M, Lejeune A, Blairy S. Overgenerality memory style for past and future events and emotions related in bipolar disorder. What are the links with problem solving and interpersonal relationships? Psychiatry Res. 2013;210:863–70. 10.1016/j.psychres.2013.06.029 PubMed
Mowlds W, Shannon C, McCusker CG, Meenagh C, Robinson D, Wilson A, et al. Autobiographical memory specificity, depression, and trauma in bipolar disorder. Br J Clin Psychol. 2010;49:217–33. 10.1348/014466509X454868 PubMed
Getz GE, Shear PK, Strakowski SM. Facial affect recognition deficits in bipolar disorder. J Int Neuropsychol Soc. 2003;9:623–32. 10.1017/S1355617703940021 PubMed
Benito A, Lahera G, Herrera S, Muncharaz R, Benito G, Frenández-Liria A, et al. Deficits in recognition, identification, and discrimination of facial emotions in patients with bipolar disorder. Braz J Psychiatry. 2013;35:435–8. 10.1590/1516-4446-2013-1086 PubMed
Penfield W, Milner B. Memory deficit produced by bilateral lesions in the hippocampal zone. AMA Arch Neurol Psychiatry. 1958;79:475–97. 10.1001/archneurpsyc.1958.02340050003001 PubMed
Kirwan CB, Bayley PJ, Galván VV, Squire LR. Detailed recollection of remote autobiographical memory after damage to the medial temporal lobe. Proc Natl Acad Sci USA. 2008;105:2676–80. 10.1073/pnas.0712155105 PubMed PMC
Söderlund H, Moscovitch M, Kumar N, Mandic M, Levine B. As time goes by: Hippocampal connectivity changes with remoteness of autobiographical memory retrieval. Hippocampus. 2012;22:670–9. 10.1002/hipo.20927 PubMed
Becker S, Wojtowicz JM. A model of hippocampal neurogenesis in memory and mood disorders. Trends Cogn Sci. 2007;11:70–76. 10.1016/j.tics.2006.10.013 PubMed
Wang J, Tambini A, Lapate RC. The tie that binds: temporal coding and adaptive emotion. Trends Cogn Sci. 2022;26:1103–18. 10.1016/j.tics.2022.09.005 PubMed
Frey BN, Andreazza AC, Nery FG, Martins MR, Quevedo J, Soares JC, et al. The role of hippocampus in the pathophysiology of bipolar disorder. Behav Pharmacol. 2007;18:419–30. 10.1097/FBP.0b013e3282df3cde PubMed
Konradi C, Zimmerman EI, Yang CK, Lohmann KM, Gresch P, Pantazopoulos H, et al. Hippocampal interneurons in bipolar disorder. Arch Gen Psychiatry. 2010;68:340. 10.1001/archgenpsychiatry.2010.175 PubMed PMC
Pantazopoulos H, Lange N, Baldessarini RJ, Berretta S. Parvalbumin neurons in the entorhinal cortex of subjects diagnosed with bipolar disorder or schizophrenia. Biol Psychiatry. 2007;61:640–52. 10.1016/j.biopsych.2006.04.026 PubMed PMC
Dowlatshahi D, MacQueen G, Wang J-F, Chen B. Increased hippocampal supragranular Timm staining in subjects with bipolar disorder. Neuroreport. 2000;11:3775–8. 10.1097/00001756-200011270-00036 PubMed
Chen C-H, Suckling J, Lennox BR, Ooi C, Bullmore ET. A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disord. 2011;13:1–15. 10.1111/j.1399-5618.2011.00893.x PubMed
Hajek T, Kopecek M, Höschl C, Alda M. Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: a meta-analysis. J Psychiatry Neurosci. 2012;37:333–43. 10.1503/jpn.110143 PubMed PMC
Hajek T, Cullis J, Novak T, Kopesek M, Höschl C, Blagdon R, et al. Hippocampal volumes in bipolar disorders: opposing effects of illness burden and lithium treatment: Hippocampus, illness burden, and lithium. Bipolar Disord. 2012;14:261–70. 10.1111/j.1399-5618.2012.01013.x PubMed PMC
Mertens J, Wang Q, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:95–99. 10.1038/nature15526 PubMed PMC
Stern S, Santos R, Marchetto MC, Mendes APD, Rouleau GA, Biesmans S, et al. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Mol Psychiatry. 2018;23:1453–65. 10.1038/mp.2016.260 PubMed PMC
Stern S, Sarkar A, Stern T, Mei A, Mendes APD, Stern Y, et al. Mechanisms underlying the hyperexcitability of CA3 and dentate gyrus hippocampal neurons derived from patients with bipolar disorder. Biol Psychiatry. 2020;88:139–49. 10.1016/j.biopsych.2019.09.018 PubMed PMC
Stern S, Sarkar A, Galor D, Stern T, Mei A, Stern Y, et al. A physiological instability displayed in hippocampal neurons derived from lithium-nonresponsive bipolar disorder patients. Biol Psychiatry. 2020;88:150–8. 10.1016/j.biopsych.2020.01.020 PubMed PMC
Wigström H. A model of a neural network with recurrent inhibition. Kybernetik. 1974;16:103–12. 10.1007/BF00271633 PubMed
Espinoza C, Guzman SJ, Zhang X, Jonas P. Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus. Nat Commun. 2018;9:4605. 10.1038/s41467-018-06899-3 PubMed PMC
Engin E, Zarnowska ED, Benke D, Tsvetkov E, Sigal M, Keist R, et al. Tonic inhibitory control of dentate gyrus granule cells by α5-containing GABAA receptors reduces memory interference. J Neurosci. 2015;35:13698–712. 10.1523/JNEUROSCI.1370-15.2015 PubMed PMC
Guzman SJ, Schlögl A, Espinoza C, Zhang X, Suter BA, Jonas P. How connectivity rules and synaptic properties shape the efficacy of pattern separation in the entorhinal cortex–dentate gyrus–CA3 network. Nat Comput Sci. 2021;1:830–42. 10.1038/s43588-021-00157-1 PubMed
Neunuebel JP, Knierim JJ. Spatial firing correlates of physiologically distinct cell types of the rat dentate gyrus. J Neurosci. 2012;32:3848–58. 10.1523/JNEUROSCI.6038-11.2012 PubMed PMC
Neunuebel JP, Knierim JJ. CA3 retrieves coherent representations from degraded input: direct evidence for CA3 pattern completion and dentate gyrus pattern separation. Neuron. 2014;81:416–27. 10.1016/j.neuron.2013.11.017 PubMed PMC
Madar AD, Ewell LA, Jones MV. Temporal pattern separation in hippocampal neurons through multiplexed neural codes. PLOS Comput Biol. 2019;15:e1006932. 10.1371/journal.pcbi.1006932 PubMed PMC
Madar AD, Ewell LA, Jones MV. Pattern separation of spiketrains in hippocampal neurons. Sci Rep. 2019;9:5282. 10.1038/s41598-019-41503-8 PubMed PMC
Singh S, Becker S, Trappenberg T, Nunes A. Granule cells perform frequency‐dependent pattern separation in a computational model of the dentate gyrus. Hippocampus. 2023;34:hipo.23585. 10.1002/hipo.23585 PubMed
Berron D, Schutze H, Maass A, Cardenas-Blanco A, Kuijf HJ, Kumaran D, et al. Strong evidence for pattern separation in human dentate gyrus. J Neurosci. 2016;36:7569–79. 10.1523/JNEUROSCI.0518-16.2016 PubMed PMC
Santoro A. Reassessing pattern separation in the dentate gyrus. Front Behav Neurosci. 2013;7:96. PubMed PMC
Madanlal D, Guinard C, Nuñez VP, Becker S, Garnham J, Khayachi A, et al. A pilot study examining the impact of lithium treatment and responsiveness on mnemonic discrimination in bipolar disorder. J Affect Disord. 2024;351:49–57. 10.1016/j.jad.2024.01.146 PubMed
Khayachi A, Abuzgaya M, Liu Y, Jiao C, Dejgaard K, Schorova L, et al. Akt and AMPK activators rescue hyperexcitability in neurons from patients with bipolar disorder. EBioMedicine. 2024;104:105161. 10.1016/j.ebiom.2024.105161 PubMed PMC
Aradi I, Holmes WR. Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci. 1999;6:215–35. PubMed
Yim MY, Hanuschkin A, Wolfart J. Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus. 2015;25:297–308. 10.1002/hipo.22373 PubMed
Santhakumar V, Aradi I, Soltesz I. Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol. 2005;93:437–53. 10.1152/jn.00777.2004 PubMed
Carnevale NT, Hines ML. The NEURON book. Cambridge University Press; United Kingdom 2006.
Kochenderfer MJ, Wheeler TA. Algorithms for optimization. The MIT Press; Cambridge, Massachusetts, USA 2019.
Myers CE, Scharfman HE. A role for hilar cells in pattern separation in the dentate gyrus: a computational approach. Hippocampus. 2009;19:321–37. 10.1002/hipo.20516 PubMed PMC
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48. 10.18637/jss.v067.i01
Treves A, Rolls ET. Computational analysis of the role of the hippocampus in memory. Hippocampus. 1994;4:374–91. 10.1002/hipo.450040319 PubMed
O’Reilly RC, McClelland JL. Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus. 1994;4:661–82. 10.1002/hipo.450040605 PubMed
Kanerva P. Sparse distributed memory. The MIT Press; Cambridge, Massachusetts, USA. 2003.
Chavlis S, Petrantonakis PC, Poirazi P. Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity. Hippocampus. 2017;27:89–110. 10.1002/hipo.22675 PubMed PMC
Kim S-Y, Lim W. Dynamical origin for winner-take-all competition in a biological network of the hippocampal dentate gyrus. Phys Rev E. 2022;105:014418. 10.1103/PhysRevE.105.014418 PubMed
GoodSmith D, Chen X, Wang C, Kim SH, Song H, Burgalossi A, et al. Spatial representations of granule cells and mossy cells of the dentate gyrus. Neuron. 2017;93:677–90.e5. 10.1016/j.neuron.2016.12.026 PubMed PMC
Danielson NB, Turi GF, Ladow M, Chavlis S, Petrantonakis PC, Poirazi P, et al. In vivo imaging of dentate gyrus mossy cells in behaving mice. Neuron. 2017;93:552–9.e4. 10.1016/j.neuron.2016.12.019 PubMed PMC
Ben-Ari Y, Gaiarsa J-L, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev. 2007;87:1215–84. 10.1152/physrev.00017.2006 PubMed
Sipilä ST, Huttu K, Voipio J, Kaila K. Intrinsic bursting of immature CA3 pyramidal neurons and consequent giant depolarizing potentials are driven by a persistent Na PubMed
Kerschensteiner D. Spontaneous network activity and synaptic development. Neuroscientist. 2014;20:272–90. 10.1177/1073858413510044 PubMed PMC
Blankenship AG, Feller MB. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci. 2010;11:18–29. 10.1038/nrn2759 PubMed PMC
Sun H, Yan R, Hua L, Xia Y, Chen Z, Huang Y, et al. Abnormal stability of spontaneous neuronal activity as a predictor of diagnosis conversion from major depressive disorder to bipolar disorder. J Psychiatr Res. 2024;171:60–68. 10.1016/j.jpsychires.2024.01.028 PubMed
Fountoulakis KN, Vieta E, Bouras C, Notaridis G, Giannakopoulos P, et al. A systematic review of existing data on long-term lithium therapy: neuroprotective or neurotoxic? Int J Neuropsychopharmacol. 2008;11:269–87. 10.1017/S1461145707007821 PubMed
Honig A, Arts BMG, Ponds RWHM, Riedel WJ. Lithium induced cognitive side-effects in bipolar disorder: a qualitative analysis and implications for daily practice. Int Clin Psychopharmacol. 1999;14:167. PubMed
Burdick KE, Millett CE, Russo M, Alda M, Alliey-Rodriguez N, Anand A, et al. The association between lithium use and neurocognitive performance in patients with bipolar disorder. Neuropsychopharmacology. 2020;45:1743–9. 10.1038/s41386-020-0683-2 PubMed PMC
Cipriani A, Pretty H, Hawton K, Geddes JR. Lithium in the prevention of suicidal behavior and all-cause mortality in patients with mood disorders: a systematic review of randomized trials. Am J Psychiatry. 2005;162:1805–19. 10.1176/appi.ajp.162.10.1805 PubMed
BALANCE investigators and collaborators, Geddes JR, Goodwin GM, Rendell J, Azorin J, Cipriani A, et al. Lithium plus valproate combination therapy versus monotherapy for relapse prevention in bipolar I disorder (BALANCE): a randomised open-label trial. Lancet. 2010;375:385–95. 10.1016/S0140-6736(09)61828-6 PubMed
Baker S, Vieweg P, Gao F, Gilboa A, Wolbers T, Black SE, et al. The human dentate gyrus plays a necessary role in discriminating new memories. Curr Biol. 2016;26:2629–34. 10.1016/j.cub.2016.07.081 PubMed
Chen G, Rajkowska G, Du F, Seraji-Bozorgzad N, Manji HK. Enhancement of hippocampal neurogenesis by lithium. J Neurochem. 2000;75:1729–34. 10.1046/j.1471-4159.2000.0751729.x PubMed
Palmos AB, Duarte RRR, Smeeth DM, Hedges EC, Nixon DF, Thuret S, et al. Lithium treatment and human hippocampal neurogenesis. Transl Psychiatry. 2021;11:1–8. 10.1038/s41398-021-01695-y PubMed PMC
Swan AA, Clutton JA, Chary PK, Cook SG, Liu GG, Drew MR. Characterization of the role of adult neurogenesis in touch-screen discrimination learning: Neurogenesis and discrimination learning. Hippocampus. 2014;24:1581–91. 10.1002/hipo.22337 PubMed PMC
Tronel S, Belnoue L, Grosjean N, Revest J, Piazza P, Koehl M, et al. Adult-born neurons are necessary for extended contextual discrimination. Hippocampus. 2012;22:292–8. 10.1002/hipo.20895 PubMed
Luu P, Sill OC, Gao L, Becker S, Wojtowicz JM, Smith DM. The role of adult hippocampal neurogenesis in reducing interference. Behav Neurosci. 2012;126:381–91. 10.1037/a0028252 PubMed PMC
Nunes A, Singh S, Allman J, Becker S, Ortiz A, Trappenberg T, et al. A critical evaluation of dynamical systems models of bipolar disorder. Transl Psychiatry. 2022;12:416. 10.1038/s41398-022-02194-4 PubMed PMC
Sunkin S. Cell types database documentation: electrophysiology overview [white paper]. Allen Institute. 2017. https://community.brain-map.org/uploads/short-url/veJ9z4lwAJoxv4Rx23b7KpnUYEp.pdf.
Marín-Burgin A, Mongiat LA, Pardi MB, Schinder AF. Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science. 2012;335:1238–42. 10.1126/science.1214956 PubMed PMC
Groisman AI, Yang SM, Schinder AF. Differential coupling of adult-born granule cells to parvalbumin and somatostatin interneurons. Cell Rep. 2020;30:202–14.e4. 10.1016/j.celrep.2019.12.005 PubMed PMC
Temprana SG, Mongiat LA, Yang SM, Trinchero MF, Alvarez DD, Kropff E, et al. Delayed coupling to feedback inhibition during a critical period for the integration of adult-born granule cells. Neuron. 2015;85:116–30. 10.1016/j.neuron.2014.11.023 PubMed PMC
Toni N, Schinder AF. Maturation and functional integration of new granule cells into the adult hippocampus. Cold Spring Harb Perspect Biol. 2016;8:a018903. 10.1101/cshperspect.a018903 PubMed PMC
Finnegan R, Becker S. Neurogenesis paradoxically decreases both pattern separation and memory interference. Front Syst Neurosci. 2015;9:136. 10.3389/fnsys.2015.00136 PubMed PMC
Williams R, Ryves WJ, Dalton EC, Eickholt B, Shaltiel G, Agam G, et al. A molecular cell biology of lithium. Biochem Soc Trans. 2004;32:799–802. 10.1042/BST0320799 PubMed
Kim HJ, Thayer SA. Lithium increases synapse formation between hippocampal neurons by depleting phosphoinositides. Mol Pharmacol. 2009;75:1021–30. 10.1124/mol.108.052357 PubMed PMC
McClelland JL, McNaughton BL, O’Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev. 1995;102:419–57. 10.1037/0033-295X.102.3.419 PubMed
Borzello M, Ramirez S, Treves A, Lee I, Scharfman H, Stark C, et al. Assessments of dentate gyrus function: discoveries and debates. Nat Rev Neurosci. 2023;24:502–17. 10.1038/s41583-023-00710-z PubMed PMC