Age-related changes in cerebral blood flow and arterial transit time in children: insights from single- and multi-delay ASL
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NU23-08-00460
Agentura Pro Zdravotnický Výzkum České Republiky
NU23-08-00460
Agentura Pro Zdravotnický Výzkum České Republiky
NU23-08-00460
Agentura Pro Zdravotnický Výzkum České Republiky
NU23-08-00460
Agentura Pro Zdravotnický Výzkum České Republiky
LX22NPO5107
NextGenerationEU
LX22NPO5107
NextGenerationEU
2020/A-210498
Luso-American Development Foundation
23SCEFIA1141920
American Heart Association
23SCEFIA1141920
American Heart Association
23SCEFIA1141920
American Heart Association
23SCEFIA1141920
American Heart Association
23SCEFIA1141920
American Heart Association
PubMed
41055711
DOI
10.1007/s00234-025-03794-9
PII: 10.1007/s00234-025-03794-9
Knihovny.cz E-zdroje
- Klíčová slova
- ASL, Arterial Transit Time, Brain Development, Pediatric, Perfusion,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Arterial spin labeling (ASL) MRI is a non-invasive perfusion imaging technique with potential for assessing hemodynamics in children. However, understanding hemodynamic changes in developing brains remains challenging. This study investigates the impact of normal brain development on ASL-derived cerebral blood flow (CBF) and arterial transit time (ATT) in MR-negative children. METHODS: Thirty-two pediatric subjects (ages 0.7-17.9 years, mean 9.3 ± 5.3y, 19 male) with MR-negative findings were retrospectively included. Four pseudo-continuous ASL (PCASL) scans were acquired: single-delay (PLD 1525 or 2025 ms) and multi-delay (3 or 7 delays). CBF and ATT in supratentorial gray matter (GM), white matter (WM), and total-brain (TB) regions were analyzed using paired t-tests, Cohen's d, Spearman correlation, and mixed linear regression models. RESULTS: Single-delay CBF was significantly higher than 3-delay CBF in GM and WM (p < 0.001 PLD 2025 ms; p = 0.02 PLD 1525 ms). WM and TB CBF correlated negatively with age (rho=-0.56, p < 0.001), whereas GM CBF showed no significant correlation (rho=-0.03, p = 0.87); the trends differed significantly (p = 0.01). GM and TB ATT increased with age (r2 > 0.11, p < 0.021). WM and TB CBF correlated with WM and combined WM/GM volumes (rho=-0.42, p = 0.02; rho=-0.46, p = 0.008). CONCLUSION: GM and WM exhibit distinct age-related hemodynamic patterns. WM perfusion declines with age and correlates with WM volume, while GM perfusion remains stable. The progressive increase in GM ATT highlights the need for cautious interpretation of single-delay ASL data in pediatric studies.
Department of Neuroradiology Western Lisbon Hospital Centre Lisbon Portugal
Department of Neurosurgery Stanford University Stanford CA United States
Department of Pathophysiology the 2nd Faculty of Medicine Charles University Prague Czech Republic
Department of Radiology Stanford University Stanford CA United States
Zobrazit více v PubMed
Vernooij MW, van der Lugt A, Ikram MA et al (2008) Total cerebral blood flow and total brain perfusion in the general population: the Rotterdam scan study. J Cereb Blood Flow Metab 28:412–419 PubMed DOI
Starekova J, Pirasteh A, Reeder SB (2024) Update on Gadolinium-based contrast agent safety, from the AJR special series on contrast media. AJR Am J Roentgenol 223:e2330036 PubMed DOI
Alsop DC, Detre JA, Golay X et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73:102–116 PubMed DOI
Lindner T, Bolar DS, Achten E (2023) Current state and guidance on arterial spin labeling perfusion MRI in clinical neuroimaging. Magn Reson Med 89:2024–2047 PubMed DOI PMC
Golay X, Ho M-L (2022) Multidelay ASL of the pediatric brain. Br J Radiol 95:20220034 PubMed DOI PMC
Hernandez-Garcia L, Aramendía-Vidaurreta V, Bolar DS et al (2022) Recent Technical Developments in ASL: A Review of the State of the Art. Magn Reson Med 88(5):2021–2042. https://doi.org/10.1002/mrm.29381 PubMed DOI PMC
Zhao MY, Tong E, Duarte Armindo R et al (2024) Measuring quantitative cerebral blood flow in healthy children: a systematic review of neuroimaging techniques. J Magn Reson Imaging 59:70–81 PubMed DOI
Satterthwaite TD (2014) Impact of puberty on the evolution of cerebral perfusion during adolescence. Proc Natl Acad Sci U S A 111(23):8643–8648 PubMed DOI PMC
Faraco CC, Strother MK, Dethrage LM et al (2015) Dual echo vessel-encoded ASL for simultaneous BOLD and CBF reactivity assessment in patients with ischemic cerebrovascular disease. Magn Reson Med 73:1579–1592 PubMed DOI
World Medical Association (2013) World medical association declaration of helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191–2194 DOI
Dai W, Shankaranarayanan A, Alsop DC (2013) Volumetric measurement of perfusion and arterial transit delay using Hadamard encoded continuous arterial spin labeling. Magn Reson Med 69:1014–1022 PubMed DOI
Mutsaerts HJMM, Petr J, Groot P et al (2020) ExploreASL: an image processing pipeline for multi-center ASL perfusion MRI studies. Neuroimage 219:117031 PubMed DOI
Prysiazhniuk Y, Server A, Leske H et al (2024) Diffuse glioma molecular profiling with arterial spin labeling and dynamic susceptibility contrast perfusion MRI: a comparative study. Neuro-Oncology Advances 6:vdae113 PubMed DOI PMC
Gaser C (2009) Partial volume segmentation with adaptive maximum a posteriori (MAP) approach. NeuroImage ; 47:S121. [Organization for Human Brain Mapping 2009 Annual Meeting]
Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70
Chiron C, Raynaud C, Mazière B et al (1992) Changes in regional cerebral blood flow during brain maturation in children and adolescents. J Nucl Med 33:696–703 PubMed
Dai W, Robson PM, Shankaranarayanan A, Alsop DC (2012) Reduced resolution transit delay prescan for quantitative continuous arterial spin labeling perfusion imaging. Magn Reson Med 67:1252–1265 PubMed DOI
van Gelderen P, de Zwart Ja, Duyn Jh (2008) Pittfalls of MRI measurement of white matter perfusion based on arterial spin labeling. Magn Reson Med 59:788–795 PubMed DOI
van Osch MJ, Teeuwisse WM, Chen Z, Suzuki Y, Helle M, Schmid S (2018) Advances in arterial spin labelling MRI methods for measuring perfusion and collateral flow. J Cereb Blood Flow Metab 38:1461–1480 PubMed DOI
Leung J (2016) Developmental trajectories of cerebrovascular reactivity in healthy children and young adults assessed with magnetic resonance imaging. J Physiol 594:2681–2689 PubMed DOI PMC
Carsin-Vu A, Corouge I, Commowick O et al (2018) Measurement of pediatric regional cerebral blood flow from 6 months to 15 years of age in a clinical population. Eur J Radiol 101:38–44 PubMed DOI
Wu C, Honarmand AR, Schnell S (2016) Age-related changes of normal cerebral and cardiac blood flow in children and adults aged 7 months to 61 years. J Am Heart Assoc 5:e002657 PubMed DOI PMC
Taki Y (2011) Correlation between gray matter density-adjusted brain perfusion and age using brain MR images of 202 healthy children. Hum Brain Mapp 32:1973–1985 PubMed DOI PMC
Gaiser C (2024) Population-wide cerebellar growth models of children and adolescents. Nat Commun 15(1):2351 PubMed DOI PMC
Tiemeier H et al (2010) Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage 49(1):63–70 PubMed DOI
Morel B, Piredda GF, Cottier J-P et al (2021) Normal volumetric and T1 relaxation time values at 1.5 T in segmented pediatric brain MRI using a MP2RAGE acquisition. Eur Radiol 31:1505–1516 PubMed DOI
Wilke M, Krägeloh-Mann I, Holland SK (2007) Global and local development of Gray and white matter volume in normal children and adolescents. Exp Brain Res 178:296–307 PubMed DOI
Giedd JN et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nature neuroscience 2(10):861–863 PubMed DOI
Makki MI, O’Gorman RL, Buhler P (2019) Total cerebrovascular blood flow and whole brain perfusion in children sedated using propofol with or without ketamine at induction: an investigation with 2D-cine PC and ASL. J Magn Reson Imaging 50:1433–1440 PubMed DOI
Liu Y (2012) Arterial spin labeling MRI study of age and gender effects on brain perfusion hemodynamics. Magn Reson Med 68:912–922 PubMed DOI
Chappell MA, Kirk TF, Craig MS et al (2023) BASIL: A toolbox for perfusion quantification using arterial spin labelling. Imaging Neurosci 1:1–16 DOI
Zhao MY, Fan AP, Chen DY-T et al (2022) Using arterial spin labeling to measure cerebrovascular reactivity in Moyamoya disease: insights from simultaneous PET/MRI. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 42:1493–1506 DOI