Elucidating the Thermal Properties of Partially Chlorinated Graphene Using Molecular Dynamics Simulations

. 2025 Oct 02 ; 129 (39) : 17767-17777. [epub] 20250917

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41058975

We investigated thermal transport in partially chlorinated graphene (PCG) via molecular dynamics (MD) simulations using a hybrid force field (h-FF) tailored for chlorinated systems. The h-FF integrates a Tersoff-type potential for C-C interactions with pairwise Morse and Lennard-Jones models for bonded C-Cl and nonbonded C-Cl/Cl-Cl interactions, respectively, including atomic charge equilibration. The Morse potential is fitted to reproduce key chemical and physical properties of C-Cl covalent bonds, while h-FF calibration aims at binding energies and bond lengths predicted by density functional theory. We relaxed suspended and supported PCG sheets with ∼1.5-25% Cl content at 300 K, confirming their thermal stability. To assess the thermal properties of PCG, we analyzed the vibrational modes captured by the simulations and compared the phonon dispersion with that of single-layer graphene (SLG). In PCG, the highest optical modes flattened and acoustic-mode frequencies downshifted due to enhanced phonon scattering, reducing thermal transport. Nonequilibrium MD simulations confirmed a marked reduction in thermal conductivity with increasing Cl content, dropping by ∼70% at ∼1% Cl content and by ∼98% at ∼25% Cl content. The h-FF model enables efficient, accurate predictions of thermally relaxed PCG sheets, offering key insights into their thermal behavior vis-à-vis SLG.

Zobrazit více v PubMed

Lee C., Wei X., Kysar J. W., Hone J.. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008;321:385–388. doi: 10.1126/science.1157996. PubMed DOI

Balandin A. A.. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011;10:569–581. doi: 10.1038/nmat3064. PubMed DOI

Han Z., Ruan X.. Thermal conductivity of monolayer graphene: Convergent and lower than diamond. Phys. Rev. B. 2023;108:L121412. doi: 10.1103/PhysRevB.108.L121412. DOI

Karlický F., Kumara Ramanatha Datta K., Otyepka M., Zbořil R.. Halogenated Graphenes: Rapidly Growing Family of Graphene Derivatives. ACS Nano. 2013;7:6434–6464. doi: 10.1021/nn4024027. PubMed DOI

Şahin H., Ciraci S.. Chlorine Adsorption on Graphene: Chlorographene. J. Phys. Chem. C. 2012;116:24075–24083. doi: 10.1021/jp307006c. DOI

Bouša D., Luxa J., Mazánek V., Jankovský O., Sedmidubský D., Klímová K., Pumera M., Sofer Z.. Toward graphene chloride: chlorination of graphene and graphene oxide. RSC Adv. 2016;6:66884–66892. doi: 10.1039/C6RA14845J. DOI

Mesquita F., Copetti G., Tumelero M., Gusmão M., Radtke C., Pureur P.. Electrical magnetotransport properties of chlorinated CVD graphene. Phys. B: Condens. Matter. 2021;609:412893. doi: 10.1016/j.physb.2021.412893. DOI

Perveen S., Khan M. I.. Halogenated graphene derivatives as an absorber layer for solar cell applications: A DFT study with vdw correction. Comput. Condens. Matter. 2023;37:e00851. doi: 10.1016/j.cocom.2023.e00851. DOI

Tan Y.-Z., Yang B., Parvez K., Narita A., Osella S., Beljonne D., Feng X., Müllen K.. Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nat. Commun. 2013;4:2646. doi: 10.1038/ncomms3646. PubMed DOI PMC

Liu B., Zhang Q., Zhang L., Xu C., Pan Z., Zhou Q., Zhou W., Wang J., Gu L., Liu H.. Electrochemically Exfoliated Chlorine-Doped Graphene for Flexible All-Solid-State Micro-Supercapacitors with High Volumetric Energy Density. Adv. Mater. 2022;34:2106309. doi: 10.1002/adma.202106309. PubMed DOI

Li W., Guo H., Li G., Chi Z., Chen H., Wang L., Liu Y., Chen K., Le M., Han Y.. et al. White luminescent single-crystalline chlorinated graphene quantum dots. Nanoscale Horiz. 2020;5:928–933. doi: 10.1039/D0NH00053A. PubMed DOI

Rho Y., Lee K., Wang L., Ko C., Chen Y., Ci P., Pei J., Zettl A., Wu J., Grigoropoulos C. P.. A laser-assisted chlorination process for reversible writing of doping patterns in graphene. Nat. Electron. 2022;5:505–510. doi: 10.1038/s41928-022-00801-2. DOI

Wang L., Li Y., Wang Y., Kong W., Lu Q., Liu X., Zhang D., Qu L.. Chlorine-Doped Graphene Quantum Dots with Enhanced Anti- and Pro-Oxidant Properties. ACS Appl. Mater. 2019;11:21822–21829. doi: 10.1021/acsami.9b03194. PubMed DOI

Li B., Zhou L., Wu D., Peng H., Yan K., Zhou Y., Liu Z.. Photochemical Chlorination of Graphene. ACS Nano. 2011;5:5957–5961. doi: 10.1021/nn201731t. PubMed DOI

Li W., Li Y., Xu K.. Facile, Electrochemical Chlorination of Graphene from an Aqueous NaCl Solution. Nano Lett. 2021;21:1150–1155. doi: 10.1021/acs.nanolett.0c04641. PubMed DOI

Zhang X., Hsu A., Wang H., Song Y., Kong J., Dresselhaus M. S., Palacios T.. Impact of Chlorine Functionalization on High-Mobility Chemical Vapor Deposition Grown Graphene. ACS Nano. 2013;7:7262–7270. doi: 10.1021/nn4026756. PubMed DOI

Zhang X., Schiros T., Nordlund D., Shin Y. C., Kong J., Dresselhaus M., Palacios T.. X-Ray Spectroscopic Investigation of Chlorinated Graphene: Surface Structure and Electronic Effects. Adv. Funct. Mater. 2015;25:4163–4169. doi: 10.1002/adfm.201500541. DOI

Wang K., Shao J., Paulus B.. Electronic and optical properties of fluorinated graphene within many-body Green’s function framework. J. Chem. Phys. 2021;154:104705. doi: 10.1063/5.0042302. PubMed DOI

Cao A.. Molecular dynamics simulation study on heat transport in monolayer graphene sheet with various geometries. J. Appl. Phys. 2012;111:083528. doi: 10.1063/1.4705510. DOI

Lukes J. R., Zhong H.. Thermal Conductivity of Individual Single-Wall Carbon Nanotubes. J. Heat Transfer. 2007;129:705–716. doi: 10.1115/1.2717242. DOI

Plimpton S.. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI

Gissinger J. R., Nikiforov I., Afshar Y., Waters B., Choi M.-k., Karls D. S., Stukowski A., Im W., Heinz H., Kohlmeyer A., Tadmor E. B.. Type Label Framework for Bonded Force Fields in LAMMPS. J. Phys. Chem. B. 2024;128:3282–3297. doi: 10.1021/acs.jpcb.3c08419. PubMed DOI

Stukowski A.. Visualization and analysis of atomistic simulation data with OVITO the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010;18:015012. doi: 10.1088/0965-0393/18/1/015012. DOI

Lindsay L., Broido D. A.. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B. 2010;81:205441. doi: 10.1103/PhysRevB.81.205441. DOI

Si C., Wang X.-D., Fan Z., Feng Z.-H., Cao B.-Y.. Impacts of potential models on calculating the thermal conductivity of graphene using non-equilibrium molecular dynamics simulations. Int. J. Heat Mass Transfer. 2017;107:450–460. doi: 10.1016/j.ijheatmasstransfer.2016.11.065. DOI

Hardy D. J., Wu Z., Phillips J. C., Stone J. E., Skeel R. D., Schulten K.. Multilevel Summation Method for Electrostatic Force Evaluation. J. Chem. Theory Comput. 2015;11:766–779. doi: 10.1021/ct5009075. PubMed DOI PMC

Costescu B. I., Baldus I. B., Gräter F.. Graphene mechanics: I. Efficient first principles based Morse potential. Phys. Chem. Chem. Phys. 2014;16:12591–12598. doi: 10.1039/C3CP55340J. PubMed DOI

Wei D., Song Y., Wang F.. A simple molecular mechanics potential for m scale graphene simulations from the adaptive force matching method. J. Chem. Phys. 2011;134:184704. doi: 10.1063/1.3589163. PubMed DOI

Winetrout J. J., Kanhaiya K., Kemppainen J., in ‘t Veld P. J., Sachdeva G., Pandey R., Damirchi B., van Duin A., Odegard G. M., Heinz H.. Implementing reactivity in molecular dynamics simulations with harmonic force fields. Nat. Commun. 2024;15:7945. doi: 10.1038/s41467-024-50793-0. PubMed DOI PMC

pair_style morse command; LAMMPS documentation  docs.lammps.org. https://docs.lammps.org/pair_morse.html [Accessed 18-03-2025].

Wanner P., Hunkeler D.. Molecular Dynamic Simulations of Carbon and Chlorine Isotopologue Fractionation of Chlorohydrocarbons during Diffusion in Liquid Water. Environ. Sci. Technol. Lett. 2019;6:681–685. doi: 10.1021/acs.estlett.9b00640. DOI

Rappe A. K., Goddard W. A. I. I. I.. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 1991;95:3358–3363. doi: 10.1021/j100161a070. DOI

Pun G. P. P., Mishin Y.. Optimized interatomic potential for silicon and its application to thermal stability of silicene. Phys. Rev. B. 2017;95:224103. doi: 10.1103/PhysRevB.95.224103. DOI

Gao W., Xiao P., Henkelman G., Liechti K. M., Huang R.. Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections. J. Phys. D: Appl. Phys. 2014;47:255301. doi: 10.1088/0022-3727/47/25/255301. DOI

Zhu S., Li T.. Wrinkling instability of graphene on substrate-supported nanoparticles. J. Appl. Mech. 2014;81:061008. doi: 10.1115/1.4026638. DOI

Koenig S. P., Boddeti N. G., Dunn M. L., Bunch J. S.. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 2011;6:543–546. doi: 10.1038/nnano.2011.123. PubMed DOI

Yang M., Zhou L., Wang J., Liu Z., Liu Z.. Evolutionary Chlorination of Graphene: From Charge-Transfer Complex to Covalent Bonding and Nonbonding. J. Phys. Chem. C. 2012;116:844–850. doi: 10.1021/jp2088143. DOI

Singh S. K., Srinivasan S. G., Neek-Amal M., Costamagna S., van Duin A. C. T., Peeters F. M.. Thermal properties of fluorinated graphene. Phys. Rev. B. 2013;87:104114. doi: 10.1103/PhysRevB.87.104114. DOI

Şahin H., Topsakal M., Ciraci S.. Structures of fluorinated graphene and their signatures. Phys. Rev. B. 2011;83:115432. doi: 10.1103/PhysRevB.83.115432. DOI

Al-Mulla T., Qin Z., Buehler M. J.. Crumpling deformation regimes of monolayer graphene on substrate: a molecular mechanics study. J. Condens. Matter Phys. 2015;27:345401. doi: 10.1088/0953-8984/27/34/345401. PubMed DOI

Fonseca A. F., Liang T., Zhang D., Choudhary K., Sinnott S. B.. Probing the accuracy of reactive and non-reactive force fields to describe physical and chemical properties of graphene-oxide. Comput. Mater. Sci. 2016;114:236–243. doi: 10.1016/j.commatsci.2015.12.030. DOI

Verstraelen T., Bultinck P., Van Speybroeck V., Ayers P. W., Van Neck D., Waroquier M.. The Significance of Parameters in Charge Equilibration Models. J. Chem. Theory Comput. 2011;7:1750–1764. doi: 10.1021/ct200006e. PubMed DOI

fix npt command; LAMMPS documentation  docs.lammps.org. https://docs.lammps.org/fix_nh.html, [Accessed 1-08-2025].

Langer R., Zaoralová D., Medved’ M., Banáš P., Błoński P., Otyepka M.. Variability of C–F Bonds Governs the Formation of Specific Structural Motifs in Fluorinated Graphenes. J. Chem. Phys. Chem. C. 2019;123:27896–27903. doi: 10.1021/acs.jpcc.9b07552. DOI

Paupitz R., Autreto P. A. S., Legoas S. B., Srinivasan S. G., van Duin A. C. T., Galvão D. S.. Graphene to fluorographene and fluorographane: a theoretical study. Nanotechnol. 2013;24:035706. doi: 10.1088/0957-4484/24/3/035706. PubMed DOI

Basconi J. E., Shirts M. R.. Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations. J. Chem. Theory Comput. 2013;9:2887–2899. doi: 10.1021/ct400109a. PubMed DOI

Qiu B., Ruan X.. Reduction of spectral phonon relaxation times from suspended to supported graphene. Appl. Phys. Lett. 2012;100:193101. doi: 10.1063/1.4712041. DOI

Kong L. T.. Phonon dispersion measured directly from molecular dynamics simulations. Comput. Phys. Commun. 2011;182:2201–2207. doi: 10.1016/j.cpc.2011.04.019. DOI

Fix phonon command LAMMPS documentation. https://docs.lammps.org/fix_phonon.html, 2024; [Accessed 22-01-2025].

Kong, L. T. Phonon Analyzer (PHANA) algorithm. https://github.com/lingtikong/phana, 2021; [Accessed 22-01-2025].

Falkovsky L. A.. Phonon dispersion in graphene. JETP. 2007;105:397–403. doi: 10.1134/S1063776107080122. DOI

Chen A., Tong H., Wu C.-W., Li S.-Y., Jia P.-Z., Zhou W.-X.. First-principles prediction of the thermal conductivity of two configurations of difluorinated graphene monolayer. Phys. Chem. Chem. Phys. 2023;26:421–429. doi: 10.1039/D3CP04923J. PubMed DOI

Lindsay L., Broido D. A., Mingo N.. Flexural phonons and thermal transport in graphene. Phys. Rev. B. 2010;82:115427. doi: 10.1103/PhysRevB.82.115427. DOI

Qin, G. ; Hu, M. In Two-dimensional Materials; Nayak, P. K. , Ed.; IntechOpen: Rijeka, 2016; Chapter 9.

Han S., Lee D., Lee S., Lee G.-D., Lee S., Jang H.. Lattice thermal conductivity and phonon transport properties of monolayer fluorographene. J. Appl. Phys. 2024;136:134305. doi: 10.1063/5.0224083. DOI

Felix I. M., Tromer R. M., Machado L. D., Galvão D. S., Ribeiro L. A., Pereira M. L.. Irida-graphene phonon thermal transport via non-equilibrium molecular dynamics simulations. Nanoscale. 2024;16:16430–16438. doi: 10.1039/D4NR02669A. PubMed DOI

Allard A., Wirtz L.. Graphene on Metallic Substrates: Suppression of the Kohn Anomalies in the Phonon Dispersion. Nano Lett. 2010;10:4335–4340. doi: 10.1021/nl101657v. PubMed DOI

Kipper A. C., Barros da Silva L.. Non equilibrium molecular dynamics simulation study of thermal conductivity in doped graphene nanoribbons. Physica B Condens. Matter. 2019;556:1–5. doi: 10.1016/j.physb.2018.12.026. DOI

Xu X., Chen J., Li B.. Phonon thermal conduction in novel 2D materials. J. Condens. Matter Phys. 2016;28:483001. doi: 10.1088/0953-8984/28/48/483001. PubMed DOI

Zhang H., Lee G., Fonseca A. F., Borders T. L., Cho K.. Isotope Effect on the Thermal Conductivity of Graphene. J. Nanomater. 2010;2010:537657. doi: 10.1155/2010/537657. DOI

Dong H., Fan Z., Qian P., Su Y.. Exactly equivalent thermal conductivity in finite systems from equilibrium and nonequilibrium molecular dynamics simulations. Phys. E: Low-Dimens. Syst. Nanostruct. 2022;144:115410. doi: 10.1016/j.physe.2022.115410. DOI

Huang W., Pei Q.-X., Liu Z., Zhang Y.-W.. Thermal conductivity of fluorinated graphene: A non-equilibrium molecular dynamics study. Chem. Phys. Lett. 2012;552:97–101. doi: 10.1016/j.cplett.2012.09.043. DOI

Xu X., Pereira L. F. C., Wang Y., Wu J., Zhang K., Zhao X., Bae S., Tinh Bui C., Xie R., Thong J. T. L.. et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 2014;5:3689. doi: 10.1038/ncomms4689. PubMed DOI

Park M., Lee S.-C., Kim Y.-S.. Length-dependent lattice thermal conductivity of graphene and its macroscopic limit. J. Appl. Phys. 2013;114:053506. doi: 10.1063/1.4817175. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...