Elucidating the Thermal Properties of Partially Chlorinated Graphene Using Molecular Dynamics Simulations
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41058975
PubMed Central
PMC12498505
DOI
10.1021/acs.jpcc.5c04046
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We investigated thermal transport in partially chlorinated graphene (PCG) via molecular dynamics (MD) simulations using a hybrid force field (h-FF) tailored for chlorinated systems. The h-FF integrates a Tersoff-type potential for C-C interactions with pairwise Morse and Lennard-Jones models for bonded C-Cl and nonbonded C-Cl/Cl-Cl interactions, respectively, including atomic charge equilibration. The Morse potential is fitted to reproduce key chemical and physical properties of C-Cl covalent bonds, while h-FF calibration aims at binding energies and bond lengths predicted by density functional theory. We relaxed suspended and supported PCG sheets with ∼1.5-25% Cl content at 300 K, confirming their thermal stability. To assess the thermal properties of PCG, we analyzed the vibrational modes captured by the simulations and compared the phonon dispersion with that of single-layer graphene (SLG). In PCG, the highest optical modes flattened and acoustic-mode frequencies downshifted due to enhanced phonon scattering, reducing thermal transport. Nonequilibrium MD simulations confirmed a marked reduction in thermal conductivity with increasing Cl content, dropping by ∼70% at ∼1% Cl content and by ∼98% at ∼25% Cl content. The h-FF model enables efficient, accurate predictions of thermally relaxed PCG sheets, offering key insights into their thermal behavior vis-à-vis SLG.
Zobrazit více v PubMed
Lee C., Wei X., Kysar J. W., Hone J.. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008;321:385–388. doi: 10.1126/science.1157996. PubMed DOI
Balandin A. A.. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011;10:569–581. doi: 10.1038/nmat3064. PubMed DOI
Han Z., Ruan X.. Thermal conductivity of monolayer graphene: Convergent and lower than diamond. Phys. Rev. B. 2023;108:L121412. doi: 10.1103/PhysRevB.108.L121412. DOI
Karlický F., Kumara Ramanatha Datta K., Otyepka M., Zbořil R.. Halogenated Graphenes: Rapidly Growing Family of Graphene Derivatives. ACS Nano. 2013;7:6434–6464. doi: 10.1021/nn4024027. PubMed DOI
Şahin H., Ciraci S.. Chlorine Adsorption on Graphene: Chlorographene. J. Phys. Chem. C. 2012;116:24075–24083. doi: 10.1021/jp307006c. DOI
Bouša D., Luxa J., Mazánek V., Jankovský O., Sedmidubský D., Klímová K., Pumera M., Sofer Z.. Toward graphene chloride: chlorination of graphene and graphene oxide. RSC Adv. 2016;6:66884–66892. doi: 10.1039/C6RA14845J. DOI
Mesquita F., Copetti G., Tumelero M., Gusmão M., Radtke C., Pureur P.. Electrical magnetotransport properties of chlorinated CVD graphene. Phys. B: Condens. Matter. 2021;609:412893. doi: 10.1016/j.physb.2021.412893. DOI
Perveen S., Khan M. I.. Halogenated graphene derivatives as an absorber layer for solar cell applications: A DFT study with vdw correction. Comput. Condens. Matter. 2023;37:e00851. doi: 10.1016/j.cocom.2023.e00851. DOI
Tan Y.-Z., Yang B., Parvez K., Narita A., Osella S., Beljonne D., Feng X., Müllen K.. Atomically precise edge chlorination of nanographenes and its application in graphene nanoribbons. Nat. Commun. 2013;4:2646. doi: 10.1038/ncomms3646. PubMed DOI PMC
Liu B., Zhang Q., Zhang L., Xu C., Pan Z., Zhou Q., Zhou W., Wang J., Gu L., Liu H.. Electrochemically Exfoliated Chlorine-Doped Graphene for Flexible All-Solid-State Micro-Supercapacitors with High Volumetric Energy Density. Adv. Mater. 2022;34:2106309. doi: 10.1002/adma.202106309. PubMed DOI
Li W., Guo H., Li G., Chi Z., Chen H., Wang L., Liu Y., Chen K., Le M., Han Y.. et al. White luminescent single-crystalline chlorinated graphene quantum dots. Nanoscale Horiz. 2020;5:928–933. doi: 10.1039/D0NH00053A. PubMed DOI
Rho Y., Lee K., Wang L., Ko C., Chen Y., Ci P., Pei J., Zettl A., Wu J., Grigoropoulos C. P.. A laser-assisted chlorination process for reversible writing of doping patterns in graphene. Nat. Electron. 2022;5:505–510. doi: 10.1038/s41928-022-00801-2. DOI
Wang L., Li Y., Wang Y., Kong W., Lu Q., Liu X., Zhang D., Qu L.. Chlorine-Doped Graphene Quantum Dots with Enhanced Anti- and Pro-Oxidant Properties. ACS Appl. Mater. 2019;11:21822–21829. doi: 10.1021/acsami.9b03194. PubMed DOI
Li B., Zhou L., Wu D., Peng H., Yan K., Zhou Y., Liu Z.. Photochemical Chlorination of Graphene. ACS Nano. 2011;5:5957–5961. doi: 10.1021/nn201731t. PubMed DOI
Li W., Li Y., Xu K.. Facile, Electrochemical Chlorination of Graphene from an Aqueous NaCl Solution. Nano Lett. 2021;21:1150–1155. doi: 10.1021/acs.nanolett.0c04641. PubMed DOI
Zhang X., Hsu A., Wang H., Song Y., Kong J., Dresselhaus M. S., Palacios T.. Impact of Chlorine Functionalization on High-Mobility Chemical Vapor Deposition Grown Graphene. ACS Nano. 2013;7:7262–7270. doi: 10.1021/nn4026756. PubMed DOI
Zhang X., Schiros T., Nordlund D., Shin Y. C., Kong J., Dresselhaus M., Palacios T.. X-Ray Spectroscopic Investigation of Chlorinated Graphene: Surface Structure and Electronic Effects. Adv. Funct. Mater. 2015;25:4163–4169. doi: 10.1002/adfm.201500541. DOI
Wang K., Shao J., Paulus B.. Electronic and optical properties of fluorinated graphene within many-body Green’s function framework. J. Chem. Phys. 2021;154:104705. doi: 10.1063/5.0042302. PubMed DOI
Cao A.. Molecular dynamics simulation study on heat transport in monolayer graphene sheet with various geometries. J. Appl. Phys. 2012;111:083528. doi: 10.1063/1.4705510. DOI
Lukes J. R., Zhong H.. Thermal Conductivity of Individual Single-Wall Carbon Nanotubes. J. Heat Transfer. 2007;129:705–716. doi: 10.1115/1.2717242. DOI
Plimpton S.. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI
Gissinger J. R., Nikiforov I., Afshar Y., Waters B., Choi M.-k., Karls D. S., Stukowski A., Im W., Heinz H., Kohlmeyer A., Tadmor E. B.. Type Label Framework for Bonded Force Fields in LAMMPS. J. Phys. Chem. B. 2024;128:3282–3297. doi: 10.1021/acs.jpcb.3c08419. PubMed DOI
Stukowski A.. Visualization and analysis of atomistic simulation data with OVITO the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010;18:015012. doi: 10.1088/0965-0393/18/1/015012. DOI
Lindsay L., Broido D. A.. Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B. 2010;81:205441. doi: 10.1103/PhysRevB.81.205441. DOI
Si C., Wang X.-D., Fan Z., Feng Z.-H., Cao B.-Y.. Impacts of potential models on calculating the thermal conductivity of graphene using non-equilibrium molecular dynamics simulations. Int. J. Heat Mass Transfer. 2017;107:450–460. doi: 10.1016/j.ijheatmasstransfer.2016.11.065. DOI
Hardy D. J., Wu Z., Phillips J. C., Stone J. E., Skeel R. D., Schulten K.. Multilevel Summation Method for Electrostatic Force Evaluation. J. Chem. Theory Comput. 2015;11:766–779. doi: 10.1021/ct5009075. PubMed DOI PMC
Costescu B. I., Baldus I. B., Gräter F.. Graphene mechanics: I. Efficient first principles based Morse potential. Phys. Chem. Chem. Phys. 2014;16:12591–12598. doi: 10.1039/C3CP55340J. PubMed DOI
Wei D., Song Y., Wang F.. A simple molecular mechanics potential for m scale graphene simulations from the adaptive force matching method. J. Chem. Phys. 2011;134:184704. doi: 10.1063/1.3589163. PubMed DOI
Winetrout J. J., Kanhaiya K., Kemppainen J., in ‘t Veld P. J., Sachdeva G., Pandey R., Damirchi B., van Duin A., Odegard G. M., Heinz H.. Implementing reactivity in molecular dynamics simulations with harmonic force fields. Nat. Commun. 2024;15:7945. doi: 10.1038/s41467-024-50793-0. PubMed DOI PMC
pair_style morse command; LAMMPS documentation docs.lammps.org. https://docs.lammps.org/pair_morse.html [Accessed 18-03-2025].
Wanner P., Hunkeler D.. Molecular Dynamic Simulations of Carbon and Chlorine Isotopologue Fractionation of Chlorohydrocarbons during Diffusion in Liquid Water. Environ. Sci. Technol. Lett. 2019;6:681–685. doi: 10.1021/acs.estlett.9b00640. DOI
Rappe A. K., Goddard W. A. I. I. I.. Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 1991;95:3358–3363. doi: 10.1021/j100161a070. DOI
Pun G. P. P., Mishin Y.. Optimized interatomic potential for silicon and its application to thermal stability of silicene. Phys. Rev. B. 2017;95:224103. doi: 10.1103/PhysRevB.95.224103. DOI
Gao W., Xiao P., Henkelman G., Liechti K. M., Huang R.. Interfacial adhesion between graphene and silicon dioxide by density functional theory with van der Waals corrections. J. Phys. D: Appl. Phys. 2014;47:255301. doi: 10.1088/0022-3727/47/25/255301. DOI
Zhu S., Li T.. Wrinkling instability of graphene on substrate-supported nanoparticles. J. Appl. Mech. 2014;81:061008. doi: 10.1115/1.4026638. DOI
Koenig S. P., Boddeti N. G., Dunn M. L., Bunch J. S.. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 2011;6:543–546. doi: 10.1038/nnano.2011.123. PubMed DOI
Yang M., Zhou L., Wang J., Liu Z., Liu Z.. Evolutionary Chlorination of Graphene: From Charge-Transfer Complex to Covalent Bonding and Nonbonding. J. Phys. Chem. C. 2012;116:844–850. doi: 10.1021/jp2088143. DOI
Singh S. K., Srinivasan S. G., Neek-Amal M., Costamagna S., van Duin A. C. T., Peeters F. M.. Thermal properties of fluorinated graphene. Phys. Rev. B. 2013;87:104114. doi: 10.1103/PhysRevB.87.104114. DOI
Şahin H., Topsakal M., Ciraci S.. Structures of fluorinated graphene and their signatures. Phys. Rev. B. 2011;83:115432. doi: 10.1103/PhysRevB.83.115432. DOI
Al-Mulla T., Qin Z., Buehler M. J.. Crumpling deformation regimes of monolayer graphene on substrate: a molecular mechanics study. J. Condens. Matter Phys. 2015;27:345401. doi: 10.1088/0953-8984/27/34/345401. PubMed DOI
Fonseca A. F., Liang T., Zhang D., Choudhary K., Sinnott S. B.. Probing the accuracy of reactive and non-reactive force fields to describe physical and chemical properties of graphene-oxide. Comput. Mater. Sci. 2016;114:236–243. doi: 10.1016/j.commatsci.2015.12.030. DOI
Verstraelen T., Bultinck P., Van Speybroeck V., Ayers P. W., Van Neck D., Waroquier M.. The Significance of Parameters in Charge Equilibration Models. J. Chem. Theory Comput. 2011;7:1750–1764. doi: 10.1021/ct200006e. PubMed DOI
fix npt command; LAMMPS documentation docs.lammps.org. https://docs.lammps.org/fix_nh.html, [Accessed 1-08-2025].
Langer R., Zaoralová D., Medved’ M., Banáš P., Błoński P., Otyepka M.. Variability of C–F Bonds Governs the Formation of Specific Structural Motifs in Fluorinated Graphenes. J. Chem. Phys. Chem. C. 2019;123:27896–27903. doi: 10.1021/acs.jpcc.9b07552. DOI
Paupitz R., Autreto P. A. S., Legoas S. B., Srinivasan S. G., van Duin A. C. T., Galvão D. S.. Graphene to fluorographene and fluorographane: a theoretical study. Nanotechnol. 2013;24:035706. doi: 10.1088/0957-4484/24/3/035706. PubMed DOI
Basconi J. E., Shirts M. R.. Effects of Temperature Control Algorithms on Transport Properties and Kinetics in Molecular Dynamics Simulations. J. Chem. Theory Comput. 2013;9:2887–2899. doi: 10.1021/ct400109a. PubMed DOI
Qiu B., Ruan X.. Reduction of spectral phonon relaxation times from suspended to supported graphene. Appl. Phys. Lett. 2012;100:193101. doi: 10.1063/1.4712041. DOI
Kong L. T.. Phonon dispersion measured directly from molecular dynamics simulations. Comput. Phys. Commun. 2011;182:2201–2207. doi: 10.1016/j.cpc.2011.04.019. DOI
Fix phonon command LAMMPS documentation. https://docs.lammps.org/fix_phonon.html, 2024; [Accessed 22-01-2025].
Kong, L. T. Phonon Analyzer (PHANA) algorithm. https://github.com/lingtikong/phana, 2021; [Accessed 22-01-2025].
Falkovsky L. A.. Phonon dispersion in graphene. JETP. 2007;105:397–403. doi: 10.1134/S1063776107080122. DOI
Chen A., Tong H., Wu C.-W., Li S.-Y., Jia P.-Z., Zhou W.-X.. First-principles prediction of the thermal conductivity of two configurations of difluorinated graphene monolayer. Phys. Chem. Chem. Phys. 2023;26:421–429. doi: 10.1039/D3CP04923J. PubMed DOI
Lindsay L., Broido D. A., Mingo N.. Flexural phonons and thermal transport in graphene. Phys. Rev. B. 2010;82:115427. doi: 10.1103/PhysRevB.82.115427. DOI
Qin, G. ; Hu, M. In Two-dimensional Materials; Nayak, P. K. , Ed.; IntechOpen: Rijeka, 2016; Chapter 9.
Han S., Lee D., Lee S., Lee G.-D., Lee S., Jang H.. Lattice thermal conductivity and phonon transport properties of monolayer fluorographene. J. Appl. Phys. 2024;136:134305. doi: 10.1063/5.0224083. DOI
Felix I. M., Tromer R. M., Machado L. D., Galvão D. S., Ribeiro L. A., Pereira M. L.. Irida-graphene phonon thermal transport via non-equilibrium molecular dynamics simulations. Nanoscale. 2024;16:16430–16438. doi: 10.1039/D4NR02669A. PubMed DOI
Allard A., Wirtz L.. Graphene on Metallic Substrates: Suppression of the Kohn Anomalies in the Phonon Dispersion. Nano Lett. 2010;10:4335–4340. doi: 10.1021/nl101657v. PubMed DOI
Kipper A. C., Barros da Silva L.. Non equilibrium molecular dynamics simulation study of thermal conductivity in doped graphene nanoribbons. Physica B Condens. Matter. 2019;556:1–5. doi: 10.1016/j.physb.2018.12.026. DOI
Xu X., Chen J., Li B.. Phonon thermal conduction in novel 2D materials. J. Condens. Matter Phys. 2016;28:483001. doi: 10.1088/0953-8984/28/48/483001. PubMed DOI
Zhang H., Lee G., Fonseca A. F., Borders T. L., Cho K.. Isotope Effect on the Thermal Conductivity of Graphene. J. Nanomater. 2010;2010:537657. doi: 10.1155/2010/537657. DOI
Dong H., Fan Z., Qian P., Su Y.. Exactly equivalent thermal conductivity in finite systems from equilibrium and nonequilibrium molecular dynamics simulations. Phys. E: Low-Dimens. Syst. Nanostruct. 2022;144:115410. doi: 10.1016/j.physe.2022.115410. DOI
Huang W., Pei Q.-X., Liu Z., Zhang Y.-W.. Thermal conductivity of fluorinated graphene: A non-equilibrium molecular dynamics study. Chem. Phys. Lett. 2012;552:97–101. doi: 10.1016/j.cplett.2012.09.043. DOI
Xu X., Pereira L. F. C., Wang Y., Wu J., Zhang K., Zhao X., Bae S., Tinh Bui C., Xie R., Thong J. T. L.. et al. Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 2014;5:3689. doi: 10.1038/ncomms4689. PubMed DOI
Park M., Lee S.-C., Kim Y.-S.. Length-dependent lattice thermal conductivity of graphene and its macroscopic limit. J. Appl. Phys. 2013;114:053506. doi: 10.1063/1.4817175. DOI