Discovery metabolomics and genetic analysis reveal lipid pathway alterations associated with malignant phenotype acquisition in pleomorphic adenoma and a novel NTF3::ITPR2 fusion in carcinoma ex pleomorphic adenoma
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41081890
DOI
10.1007/s00428-025-04242-y
PII: 10.1007/s00428-025-04242-y
Knihovny.cz E-zdroje
- Klíčová slova
- Carcinoma ex pleomorphic adenoma, Gene fusion, Genetic variants, Metabolic alterations, Metabolomics, Pleomorphic adenoma, Salivary gland neoplasms,
- Publikační typ
- časopisecké články MeSH
Pleomorphic adenoma (PA) is the most common salivary gland tumor. Although it is benign, PA may recur, metastasize, and undergo malignant transformation into carcinoma ex pleomorphic adenoma (CXPA). The mechanisms underlying this transformation are unclear, but it is believed that they involve the accumulation of molecular alterations. This study aimed to analyze the metabolomic profile associated with the acquisition of the malignant phenotype in PA and to identify the metabolic pathways involved in this process. A retrospective analysis was conducted using our institutional Salivary Gland Tumor Registry, which comprises 15 cases each of normal salivary gland (NSG), PA, recurrent PA (RPA), and CXPA. Metabolomic profiling was performed on formalin-fixed, paraffin-embedded tissue samples. Selected CXPA cases underwent genetic sequencing to investigate potential molecular alterations. The analysis revealed changes in carbohydrate, amino acid, and lipid metabolism. Notably, alterations in lipid-related pathways, particularly those involving fatty acids, appeared to play a significanat role in the acquisition of the malignant phenotype. Genetic analysis identified a novel NTF3::ITPR2 fusion in one CXPA case. Additionally, variants were detected in ARID1A, NSD1, XPO1, FOXA1, TP53, GATA2, LZTR1, PIK3CA, IRF4, and CHEK1, with allele frequencies ranging from 10% to 84%, indicating substantial genetic heterogeneity among CXPA cases. This study provides the first comprehensive metabolomic snapshot of malignant phenotype acquisition in PA. Identifying lipid metabolic dysregulation and a novel NTF3::ITPR2 gene fusion highlights potential diagnostic biomarkers and unveils actionable pathways that could be translated into targeted and personalized therapies for salivary gland tumors.
Bioptic Laboratory Ltd Pilsen Czech Republic
Department of Pathology Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Head and Neck Surgery Department University of São Paulo Medical School São Paulo Brazil
National Institute of Science and Technology in Bioanalytics Campinas São Paulo Brazil
Zobrazit více v PubMed
WHO Classification of Tumours Editorial Board (2022) Head and neck tumours, WHO classification of tumours, 5th edn. International Agency for Research on Cancer, Lyon. https://publications.iarc.fr/
Pérez-de-Oliveira ME, da Silva Leonel ACL, de Castro JFL et al (2019) Histopathological findings of intraoral pleomorphic adenomas: a retrospective study of a case series. Int J Surg Pathol 27:729–735. https://doi.org/10.1177/1066896919854181 PubMed DOI
Witt RL, Eisele DW, Morton RP et al (2015) Etiology and management of recurrent parotid pleomorphic adenoma. Laryngoscope 125:888–893. https://doi.org/10.1002/lary.24964 PubMed DOI
Andreasen S, Therkildsen MH, Bjørndal K, Homøe P (2016) Pleomorphic adenoma of the parotid gland 1985–2010: a Danish nationwide study of incidence, recurrence rate, and malignant transformation. Head Neck 38(Suppl 1):E1364–E1369. https://doi.org/10.1002/hed.24228 PubMed DOI
Altemani A, Martins MT, Freitas L et al (2005) Carcinoma ex pleomorphic adenoma (CXPA): immunoprofile of the cells involved in carcinomatous progression. Histopathology 46(6):635–641. https://doi.org/10.1111/j.1365-2559.2005.02157.x PubMed DOI
Di Palma S (2013) Carcinoma ex pleomorphic adenoma, with particular emphasis on early lesions. Head Neck Pathol 7(Suppl 1):S68–S76. https://doi.org/10.1007/s12105-013-0454-z PubMed DOI
Mariano FV, Noronha ALF, Gondak RO et al (2013) Carcinoma ex pleomorphic adenoma in a Brazilian population: clinico-pathological analysis of 38 cases. Int J Oral Maxillofac Surg 42:685–692. https://doi.org/10.1016/j.ijom.2013.02.012 PubMed DOI
de Lima-Souza RA, Scarini JF, Lavareze L et al (2023) Discovery proteomics reveals potential protein signature associated with malignant phenotype acquisition in pleomorphic adenoma. Oral Dis 29:1017–1027. https://doi.org/10.1111/odi.14102 PubMed DOI
Scarini JF, Rosa LF, de Lima-Souza RA et al (2020) Gene and immunohistochemical expression of HIF-1α, GLUT-1, FASN, and adipophilin in carcinoma ex pleomorphic adenoma development. Oral Dis 26:1190–1199. https://doi.org/10.1111/odi.13332 PubMed DOI
Kimura TdeC, Scarini JF, Lavareze L et al (2024) Microrna copy number alterations in the malignant transformation of pleomorphic adenoma to carcinoma ex pleomorphic adenoma. Head Neck 46:985–1000. https://doi.org/10.1002/hed.27717 PubMed DOI
de Lima-Souza RA, de Magalhães Rodrigues N, Scarini JF et al (2022) Metabolic alterations in carcinoma ex pleomorphic adenoma development of lacrimal glands. Int Ophthalmol 42:1101–1109. https://doi.org/10.1007/s10792-021-02096-2 PubMed DOI
Katabi N, Ghossein R, Ho A et al (2015) Consistent PLAG1 and HMGA2 abnormalities distinguish carcinoma ex-pleomorphic adenoma from its de novo counterparts. Hum Pathol 46:26–33. https://doi.org/10.1016/j.humpath.2014.08.017 PubMed DOI
Zanella VG, Costa SFDS, Schuch LF et al (2024) Pleomorphic adenoma and carcinoma ex-pleomorphic adenoma tumorigenesis: a proteomic analysis. Oral Dis. https://doi.org/10.1111/odi.15109 PubMed DOI PMC
de Lima-Souza RA, de Souza Vieira G, de Carvalho Kimura T et al (2024) Insights into the molecular alterations of PLAG1 and HMGA2 associated with malignant phenotype acquisition in pleomorphic adenoma. Crit Rev Oncol Hematol 204:104494. https://doi.org/10.1016/j.critrevonc.2024.104494 PubMed DOI
Fiehn O (2016) Metabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol 114:30.4.1-30.4.32. https://doi.org/10.1002/0471142727.mb3004s114 PubMed DOI PMC
Bueno Duarte GH, de Piloto Fernandes AMA, Silva AAR et al (2020) Gas chromatography-mass spectrometry untargeted profiling of non-Hodgkin’s lymphoma urinary metabolite markers. Anal Bioanal Chem 412:7469–7480. https://doi.org/10.1007/s00216-020-02881-5 PubMed DOI
Rodrigues-Fernandes CI, Martins-Chaves RR, Vitório JG et al (2023) The altered metabolic pathways of diffuse large B-cell lymphoma not otherwise specified. Leuk Lymphoma 64:1771–1781. https://doi.org/10.1080/10428194.2023.2234523 PubMed DOI
Zhang L, Jin H, Guo X et al (2012) Distinguishing pancreatic cancer from chronic pancreatitis and healthy individuals by PubMed DOI
Ricroch AE, Bergé JB, Kuntz M (2011) Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques. Plant Physiol 155:1752–1761. https://doi.org/10.1104/pp.111.173609 PubMed DOI PMC
Wojakowska A, Marczak Ł, Jelonek K et al (2015) An optimized method of metabolite extraction from formalin-fixed paraffin-embedded tissue for GC/MS analysis. PLoS ONE 10:e0136902. https://doi.org/10.1371/journal.pone.0136902 PubMed DOI PMC
Tsugawa H, Cajka T, Kind T et al (2015) MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12:523–526. https://doi.org/10.1038/nmeth.3393 PubMed DOI PMC
Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 3:211–221. https://doi.org/10.1007/s11306-007-0082-2 PubMed DOI PMC
Wishart DS, Guo A, Oler E et al (2022) HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res 50:D622–D631. https://doi.org/10.1093/nar/gkab1062 PubMed DOI
Pang Z, Lu Y, Zhou G et al (2024) Metaboanalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res 52:W398–W406. https://doi.org/10.1093/nar/gkae253 PubMed DOI PMC
Landrum MJ, Lee JM, Benson M et al (2018) Clinvar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062–D1067. https://doi.org/10.1093/nar/gkx1153 PubMed DOI
Koboldt DC (2020) Best practices for variant calling in clinical sequencing. Genome Med 12:91. https://doi.org/10.1186/s13073-020-00791-w PubMed DOI PMC
Jung MK, Okekunle AP, Lee JE et al (2021) Role of branched-chain amino acid metabolism in tumor development and progression. J Cancer Prev 26:237–243. https://doi.org/10.15430/JCP.2021.26.4.237 PubMed DOI PMC
Vazquez A, Kamphorst JJ, Markert EK et al (2016) Cancer metabolism at a glance. J Cell Sci 129:3367–3373. https://doi.org/10.1242/jcs.181016 PubMed DOI PMC
DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2:e1600200. https://doi.org/10.1126/sciadv.1600200 PubMed DOI PMC
Ananieva EA, Wilkinson AC (2018) Branched-chain amino acid metabolism in cancer. Curr Opin Clin Nutr Metab Care 21:64–70. https://doi.org/10.1097/MCO.0000000000000430 PubMed DOI
Chang I-W, Wu W, Wang Y-H et al (2016) BCAT1 overexpression is an indicator of poor prognosis in patients with urothelial carcinomas of the upper urinary tract and urinary bladder. Histopathology 68:520–532. https://doi.org/10.1111/his.12778 PubMed DOI
Zheng Y-H, Hu W-J, Chen B-C et al (2016) <scp>BCAT</scp>1, a key prognostic predictor of hepatocellular carcinoma, promotes cell proliferation and induces chemoresistance to cisplatin. Liver Int 36(12):1836–1847. https://doi.org/10.1111/liv.13178 PubMed DOI
Xu Y, Yu W, Yang T et al (2018) Overexpression of BCAT1 is a prognostic marker in gastric cancer. Hum Pathol 75:41–46. https://doi.org/10.1016/j.humpath.2018.02.003 PubMed DOI
Xu K, Liu P, Wei W (2014) mTOR signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 1846:638–654. https://doi.org/10.1016/j.bbcan.2014.10.007 DOI
Bolster DR, Jefferson LS, Kimball SR (2004) Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling. Proc Nutr Soc 63:351–356. https://doi.org/10.1079/PNS2004355 PubMed DOI
Wang K, Russell JS, McDermott JD et al (2016) Profiling of 149 salivary duct carcinomas, carcinoma ex pleomorphic adenomas, and adenocarcinomas, not otherwise specified reveals actionable genomic alterations. Clin Cancer Res 22:6061–6068. https://doi.org/10.1158/1078-0432.CCR-15-2568 PubMed DOI
de Lima-Souza RA, Altemani A, Michal M et al (2024) Expanding the molecular spectrum of carcinoma ex pleomorphic adenoma. Am J Surg Pathol. https://doi.org/10.1097/PAS.0000000000002307 PubMed DOI
Iida Y, Serizawa M, Mukaigawa T et al (2020) Molecular profile of a pleomorphic adenoma of the hard palate. Medicine (Baltimore) 99:e21207. https://doi.org/10.1097/MD.0000000000021207 PubMed DOI
Xu E, Ji B, Jin K, Chen Y (2023) Branched-chain amino acids catabolism and cancer progression: focus on therapeutic interventions. Front Oncol 13:1220638. https://doi.org/10.3389/fonc.2023.1220638 PubMed DOI PMC
Du C, Liu W-J, Yang J et al (2022) The role of branched-chain amino acids and branched-chain α-keto acid dehydrogenase kinase in metabolic disorders. Front Nutr 9:932670. https://doi.org/10.3389/fnut.2022.932670 PubMed DOI PMC
Gotvaldová K, Špačková J, Novotný J et al (2024) BCAA metabolism in pancreatic cancer affects lipid balance by regulating fatty acid import into mitochondria. Cancer Metab 12:10. https://doi.org/10.1186/s40170-024-00335-5 PubMed DOI PMC
Sant’Anna-Silva ACB, Santos GC, Campos SPC et al (2018) Metabolic profile of oral squamous carcinoma cell lines relies on a higher demand of lipid metabolism in metastatic cells. Front Oncol 8:13. https://doi.org/10.3389/fonc.2018.00013 PubMed DOI PMC
Scarini JF, Sabino WL, de Lima-Souza RA et al (2024) Distinct copy number signatures between residual benign and transformed areas of carcinoma ex pleomorphic adenoma. Sci Rep 14:23645. https://doi.org/10.1038/s41598-024-63763-9 PubMed DOI PMC
Díaz KP, Gondak R, Martins LL et al (2019) Fatty acid synthase and Ki-67 immunoexpression can be useful for the identification of malignant component in carcinoma ex-pleomorphic adenoma. J Oral Pathol Med 48:232–238. https://doi.org/10.1111/jop.12820 PubMed DOI
de Angelis CM, de Lima-Souza RA, Scarini JF et al (2021) Immunohistochemical expression of Fatty Acid Synthase (FASN) is correlated to tumor aggressiveness and cellular differentiation in salivary gland carcinomas. Head Neck Pathol 15:1119–1126. https://doi.org/10.1007/s12105-021-01319-3 PubMed DOI PMC
Xiao X, Song B-L (2013) SREBP: a novel therapeutic target. Acta Biochim Biophys Sin (Shanghai) 45:2–10. https://doi.org/10.1093/abbs/gms112 PubMed DOI
Tobin KA, Steineger HH, Alberti S et al (2000) Cross-talk between fatty acid and cholesterol metabolism mediated by liver X receptor-alpha. Mol Endocrinol 14:741–752. https://doi.org/10.1210/mend.14.5.0459 PubMed DOI
Fruman DA, Chiu H, Hopkins BD et al (2017) The PI3K pathway in human disease. Cell 170:605–635. https://doi.org/10.1016/j.cell.2017.07.029 PubMed DOI PMC
Lien EC, Dibble CC, Toker A (2017) PI3K signaling in cancer: beyond AKT. Curr Opin Cell Biol 45:62–71. https://doi.org/10.1016/j.ceb.2017.02.007 PubMed DOI PMC
Zhang Q, Wakelam MJO (2014) Lipidomics in the analysis of malignancy. Adv Biol Regul 54:93–98. https://doi.org/10.1016/j.jbior.2013.11.001 PubMed DOI
Molendijk J, Robinson H, Djuric Z, Hill MM (2020) Lipid mechanisms in hallmarks of cancer. Mol Omics 16:6–18. https://doi.org/10.1039/C9MO00128J PubMed DOI PMC
Duarte-Andrade FF, Silva AMB, Vitório JG et al (2019) The importance of BRAF-V600E mutation to ameloblastoma metabolism. J Oral Pathol Med 48:307–314. https://doi.org/10.1111/jop.12839 PubMed DOI
Vitório JG, Duarte-Andrade FF, Dos Santos Fontes Pereira T et al (2020) Metabolic landscape of oral squamous cell carcinoma. Metabolomics 16:105. https://doi.org/10.1007/s11306-020-01727-6 PubMed DOI
OuYang D, Xu J, Huang H, Chen Z (2011) Metabolomic profiling of serum from human pancreatic cancer patients using PubMed DOI
Santana T, Pavel A, Martinek P et al (2019) Biomarker immunoprofile and molecular characteristics in salivary duct carcinoma: clinicopathological and prognostic implications. Hum Pathol 93:37–47. https://doi.org/10.1016/j.humpath.2019.08.009 PubMed DOI
Dalin MG, Desrichard A, Katabi N et al (2016) Comprehensive molecular characterization of salivary duct carcinoma reveals actionable targets and similarity to apocrine breast cancer. Clin Cancer Res 22:4623–4633. https://doi.org/10.1158/1078-0432.CCR-16-0637 PubMed DOI PMC
de Brito BS, Giovanelli N, Egal ES et al (2016) Loss of expression of Plag1 in malignant transformation from pleomorphic adenoma to carcinoma ex pleomorphic adenoma. Hum Pathol 57:152–159. https://doi.org/10.1016/j.humpath.2016.07.011 PubMed DOI
Mito JK, Jo VY, Chiosea SI et al (2017) HMGA2 is a specific immunohistochemical marker for pleomorphic adenoma and carcinoma ex-pleomorphic adenoma. Histopathology 71:511–521. https://doi.org/10.1111/his.13246 PubMed DOI
Liang L, Williams MD, Bell D (2019) Expression of PTEN, androgen receptor, HER2/neu, cytokeratin 5/6, estrogen receptor-beta, HMGA2, and PLAG1 in salivary duct carcinoma. Head Neck Pathol 13:529–534. https://doi.org/10.1007/s12105-018-0984-5 PubMed DOI
Liu R, Li R, Yu H et al (2021) NTF3 correlates with prognosis and immune infiltration in hepatocellular carcinoma. Front Med 8:795849. https://doi.org/10.3389/fmed.2021.795849 DOI
Yang Z, Zhang H, Yin M et al (2022) Neurotrophin3 promotes hepatocellular carcinoma apoptosis through the JNK and P38 MAPK pathways. Int J Biol Sci 18:5963–5977. https://doi.org/10.7150/ijbs.72982 PubMed DOI PMC
Vervloessem T, Yule DI, Bultynck G, Parys JB (2015) The type 2 inositol 1,4,5-trisphosphate receptor, emerging functions for an intriguing Ca PubMed DOI
Shi J, Fu L, Wang W (2015) High expression of inositol 1,4,5-trisphosphate receptor, type 2 (ITPR2) as a novel biomarker for worse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget 6:5299–5309. https://doi.org/10.18632/oncotarget.3024 PubMed DOI PMC
Bubola J, MacMillan CM, Demicco EG et al (2021) Targeted <scp>RNA</scp> sequencing in the routine clinical detection of fusion genes in salivary gland tumors. Genes Chromosomes Cancer 60:695–708. https://doi.org/10.1002/gcc.22979 PubMed DOI PMC
Afshari MK, Tejera Nevado P, Fehr A et al (2025) The transcriptomic and gene fusion landscape of pleomorphic salivary gland adenomas. Genes Chromosomes Cancer 64:e70023. https://doi.org/10.1002/gcc.70023 PubMed DOI PMC
Baněčková M, Uro-Coste E, Ptáková N et al (2020) What is hiding behind S100 protein and SOX10 positive oncocytomas? Oncocytic pleomorphic adenoma and myoepithelioma with novel gene fusions in a subset of cases. Hum Pathol 103:52–62. https://doi.org/10.1016/j.humpath.2020.07.009 PubMed DOI
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. https://doi.org/10.1016/j.cell.2011.02.013 PubMed DOI
Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23:27–47. https://doi.org/10.1016/j.cmet.2015.12.006 PubMed DOI PMC