Effective Coupling of Light Emitting Diode to a Commercial Capillary Electrophoresis Laser-Induced Fluorescence Instrument for High-Sensitivity Analysis of Fluorescently Labeled Glycans
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41103205
PubMed Central
PMC12573225
DOI
10.1021/acs.analchem.5c05248
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Light-emitting diodes offer a low-cost, power-efficient, and compact solution for fluorescence excitation in analytical instrumentation. This study discusses the coupling of a near-ultraviolet light-emitting diode (340 nm) to a commercial capillary electrophoresis instrument and presents two feasible strategies: a simple, robust, and low-cost option with moderate efficiency and a more complex but significantly more efficient design for applications demanding maximum sensitivity. The coupling efficiency was assessed using capillary zone electrophoresis of maltooligosaccharides labeled with the UV-excitable fluorophore, 6-[4-(4-methylpiperazin-1-yl)phenyl]pyridine-3-carbohydrazide. Compared to a commonly used indirect light guide coupling approach, the new direct coupling design, incorporating a single ball lens, provided a 10.7-fold increase in the fluorescence signal. The design incorporating two plano-convex lenses increased the fluorescence signal by a factor of 31.2 and achieved limits of detection between 99 and 105 nmol/L for the analyzed labeled maltooligosaccharides. This optimized configuration enabled the successful N-linked glycan analysis from minute sample quantities, specifically, 28.8 ng of ovalbumin and 7.49 ng of ribonuclease B.
Zobrazit více v PubMed
Ban E., Song E. J.. Recent Developments and Applications of Capillary Electrophoresis with Laser-Induced Fluorescence Detection in Biological Samples. J. Chromatogr B Analyt Technol. Biomed Life Sci. 2013;929:180–186. doi: 10.1016/j.jchromb.2013.04.028. PubMed DOI
Szöko E., Tábi T.. Analysis of Biological Samples by Capillary Electrophoresis with Laser Induced Fluorescence Detection. J. Pharm. Biomed Anal. 2010;53(5):1180–1192. doi: 10.1016/j.jpba.2010.07.045. PubMed DOI
Šesták J., Guttman A., Lavická J.. Fluorescence Detection Setups in Capillary Electrophoresis and Microscale Liquid Chromatography: Developments over the Past Decade. TrAC Trends Anal. Chem. 2024;181(September):118001. doi: 10.1016/j.trac.2024.118001. DOI
Smolkova D., Cmelik R., Lavicka J.. Labeling Strategies for Analysis of Oligosaccharides and Glycans by Capillary Electrophoresis. TrAC - Trends in Analytical Chemistry. 2023;163:117068. doi: 10.1016/j.trac.2023.117068. DOI
Wuethrich A., Quirino J. P.. Derivatisation for Separation and Detection in Capillary Electrophoresis (2012–2015) Electrophoresis. 2016;37(1):45–55. doi: 10.1002/elps.201500290. PubMed DOI
Johnson M. E., Landers J. P.. Fundamentals and Practice for Ultrasensitive Laser-Induced Fluorescence Detection in Microanalytical Systems. Electrophoresis. 2004;25(21–22):3513–3527. doi: 10.1002/elps.200406086. PubMed DOI
Carrasco-Correa E. J., Simó-Alfonso E. F., Herrero-Martínez J. M., Miró M.. The Emerging Role of 3D Printing in the Fabrication of Detection Systems. TrAC Trends in Analytical Chemistry. 2021;136:116177. doi: 10.1016/j.trac.2020.116177. DOI
Dusa F., Rusin M., Smolkova D., Sestak J., Dobrowolska-Iwanek J., Woźniakiewicz M., Lavicka J.. Adapting the Laser-Induced Fluorescence Detection Setup of the Standard Capillary Electrophoresis Equipment to Achieve High-Sensitivity Detection of 2-Aminoacridone Labeled Oligosaccharides. J. Sep Sci. 2025;48(3):e70112. doi: 10.1002/jssc.70112. PubMed DOI PMC
Bui D. A., Hauser P. C.. Analytical Devices Based on Light-Emitting Diodes - A Review of the State-of-the-Art. Anal. Chim. Acta. 2015;853(1):46–58. doi: 10.1016/j.aca.2014.09.044. PubMed DOI
Rodat-Boutonnet A., Naccache P., Morin A., Fabre J., Feurer B., Couderc F.. A Comparative Study of LED-Induced Fluorescence and Laser-Induced Fluorescence in SDS-CGE: Application to the Analysis of Antibodies. Electrophoresis. 2012;33(12):1709–1714. doi: 10.1002/elps.201200132. PubMed DOI
Mukunda D. C., Joshi V. K., Mahato K. K.. Light Emitting Diodes (LEDs) in Fluorescence-Based Analytical Applications: A Review. Appl. Spectrosc Rev. 2022;57(1):1–38. doi: 10.1080/05704928.2020.1835939. DOI
Dusa F., Smolkova D., Cmelik R., Guttman A., Lavicka J.. Labeling of Oligosaccharides and N-Linked Glycans by a Rhodamine-Based Fluorescent Tag for Analysis by Capillary Electrophoresis with Laser-Induced Fluorescence and Mass Spectrometry Detection. Talanta. 2025;286(December 2024):127456. doi: 10.1016/j.talanta.2024.127456. PubMed DOI
Krenkova J., Bobal P., Partyka J., Cmelik R., Foret F.. Investigation of a Side Reaction Occurring during N-Linked Glycan Labeling by Cationic Tags. J. Chromatogr A. 2018;1570:67–74. doi: 10.1016/j.chroma.2018.07.066. PubMed DOI
Farsang R., Hogyor K., Jarvas G., Guttman A.. Capillary Zone Electrophoresis of 8-Aminopyrene-1,3,6-Trisulfonic Acid Labeled Carbohydrates with Online Electrokinetic Sample Cleanup. Anal. Chem. 2023;95(45):16459–16464. doi: 10.1021/acs.analchem.3c03714. PubMed DOI
Duša F., Moravcová D., Šlais K.. Low-Molecular-Mass Colored Compounds for Fine Tracing of PH Gradient on Broad and Narrow Scale in Isoelectric Focusing. Anal. Chim. Acta. 2022;1221:340035. doi: 10.1016/j.aca.2022.340035. PubMed DOI
Grochocki W., Buszewska-Forajta M., Macioszek S., J. Markuszewski M.. Determination of Urinary Pterins by Capillary Electrophoresis Coupled with LED-Induced Fluorescence Detector. Molecules. 2019;24(6):1166. doi: 10.3390/molecules24061166. PubMed DOI PMC
Chang Y.-S., Shih C.-M., Lin C.-H.. UV Light-Emitting Diode-Induced Fluorescence Detection Combined with Online Sample Concentration Techniques for Capillary Electrophoresis. Anal. Sci. 2006;22(2):235–240. doi: 10.2116/analsci.22.235. PubMed DOI
Prikryl J., Foret F.. Fluorescence Detector for Capillary Separations Fabricated by 3D Printing. Anal. Chem. 2014;86(24):11951–11956. doi: 10.1021/ac503678n. PubMed DOI
Casto L. D., Do K. B., Baker C. A.. A Miniature 3d Printed Led-Induced Fluorescence Detector for Capillary Electrophoresis and Dual-Detector Taylor Dispersion Analysis. Anal. Chem. 2019;91(15):9451–9457. doi: 10.1021/acs.analchem.8b05824. PubMed DOI
Ryvolová M., Preisler J., Foret F., Hauser P. C., Krásenský P., Paull B., Macka M.. Combined Contactless Conductometric, Photometric, and Fluorimetric Single Point Detector for Capillary Separation Methods. Anal. Chem. 2010;82(1):129–135. doi: 10.1021/ac902376v. PubMed DOI
Zeng Z., Zhang Z., Yin B., Zhang M.. Simultaneously Performing Taylor Dispersion Analysis with Fluorimetry, Photometry, and Contactless Conductometry at the Same Detection Window. Talanta. 2024;280(July):126677. doi: 10.1016/j.talanta.2024.126677. PubMed DOI
Szarka M., Guttman A.. Smartphone Cortex Controlled Real-Time Image Processing and Reprocessing for Concentration Independent LED Induced Fluorescence Detection in Capillary Electrophoresis. Anal. Chem. 2017;89(20):10673–10678. doi: 10.1021/acs.analchem.7b03525. PubMed DOI