First genetic characterisation and phylogenetic analysis of Trichomonadida from Gallus gallus domesticus (Aves: Phasianidae) and its nematode parasite Heterakis gallinarum (Ascaridida: Heterakidae) in Tunisia
Jazyk angličtina Země Česko Médium electronic
Typ dokumentu časopisecké články
PubMed
41117327
DOI
10.14411/fp.2025.029
PII: 2025.029
Knihovny.cz E-zdroje
- Klíčová slova
- 18S rDNA, Trichomonadida, evolutionary relationships, genetic diversity, mixed infection., α-actinin 1 gene,
- MeSH
- fylogeneze * MeSH
- genetická variace MeSH
- kur domácí * parazitologie MeSH
- nemoci drůbeže * parazitologie epidemiologie MeSH
- protozoální infekce zvířat * parazitologie epidemiologie MeSH
- RNA ribozomální 18S genetika analýza MeSH
- Trichomonadida * genetika klasifikace izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Tunisko epidemiologie MeSH
- Názvy látek
- RNA ribozomální 18S MeSH
Flagellated protozoa of the order Trichomonadida infect a variety of vertebrates, including poultry such as Gallus gallus domesticus (Linnaeus). Several trichomonad pathogens are of significant veterinary importance due to their role in diseases that cause high mortality rates in chickens. Despite the importance of Trichomonadida in poultry health, molecular studies on these protozoa in North Africa are limited. This study addresses this gap by investigating the genetic diversity and evolutionary relationships of Trichomonadida isolated from G. gallus domesticus and its nematode parasite Heterakis gallinarum (Schrank, 1788) in Tunisia, using a multilocus molecular approach with 18S rRNA and α-actinin 1 genes. Based on both markers, all Tunisian haplotypes, which clustered with those from France, were found to belong to genotype2. 18S rRNA analysis revealed the existence of protozoans such as Histomonas meleagridis (Smith, 1895) and Parahistomonas wenrichi Lund, 1963 in coinfection with H. gallinarum, confirming a possible mixed infection. Additionally, when analysing caecal samples, other Trichomonadida species were identified, including Simplicimonas sp. and Tetratrichomonas gallinarum (Martin et Robertson, 1911). These findings suggest a complex protozoan community within the studied hosts. Phylogenetic analysis revealed a close relationship between H. meleagridis and P. wenrichi, as well as between Simplicimonas sp. and the Monoceromonas-Tritrichomonas group. Both H. meleagridis genotypes 1 and 2 exhibited a sister-group relationship with P. wenrichi, with strong support for a common evolutionary origin. Tetratrichomonas gallinarum was basal in the tree, suggesting early divergence in the Trichomonadida lineage. This study provides, for the first time, insights into the genetic diversity of trichomonadids in Tunisia. The 18S rDNA locus proved to be effective for assessing the genetic diversity of H. meleagridis, P. wenrichi, T. gallinarum and Simplicimonas sp. and showed a possible mixed infection. The findings provide valuable insights into the genetic characteristics of these parasites in Tunisian poultry farms and contribute to the understanding of Trichomonadida diversity, enhancing disease control and prevention efforts.
Department of Veterinary Medicine University of Sassari Sassari Italy
Department of Zoology King Saud University Riyadh Saudi Arabia
Zobrazit více v PubMed
Adl S.M., Simpson A.G.B., Farmer M.A., Andersen R.A., Anderson O.R., Barta J.R., Bowser S.S., Brugerolle G., Fensome R.A., Fredericq S., James T.Y., Karpov S., Kugrens P., Krug J., Lane C.E., Lewis L.A., Lodge J., Lynn D.H., Mann D.G., McCourt R.M., Mendoza L., Moestrup O., Mozley-Standridge S.E., Nerad T.A., Shearer C.A., Smirnov A.V., Spiegel F.W., Taylor M.F.J.R. 2005: The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Euk. Microbiol. 52: 399-451. PubMed DOI
Adl S.M., Simpson A.G.B., Lane C.E., Lukeš J., Bass D., Bowser S.S., Brown M.W., Burki F., Dunthorn M., Hampl V., Heiss A., Hoppenrath M., Lara E., Gall L.L., Lynn D.H., McManus H., Mitchell E.A.D., Mozley-Stanridge S.E., Parfrey L.W., Pawlowski J., Rueckert S., Shadwick L., Schoch C.L., Smirnov A., Spiegel F.W. 2012: The revised classification of eukaryotes. J. Euk. Microbiol. 59: 429-493. PubMed DOI
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990: Basic local alignment search tool. J. Mol. Biol. 215: 403-410. PubMed DOI
Amor N., Farjallah S., Mohammed O.B., Alagaili A., Bahri-Sfar L. 2018: Molecular characterization of the nematode Heterakis gallinarum (Ascaridida: Heterakidae) infecting domestic chickens (Gallus gallus domesticus) in Tunisia. Turk. J. Vet. Anim. Sci. 42: 388-394. DOI
Barribeau S.M., Sadd B.M., Plessis L., Schmid-Hempel P. 2014: Gene expression differences underlying genotype-by-genotype specificity in a host-parasite system. Proc. Natl. Acad. Sci. USA 111: 3496-3501. PubMed DOI
Beer L.C., Petrone-Garcia V.M., Graham B.D., Hargis B.M., Tellez-Isaias G., Vuong C.N. 2022: Histomonosis in poultry: a comprehensive review. Front. Vet. Sci. 9: 880738. PubMed DOI
Bilic I., Jaskulska B., Souillard R., Liebhart D., Hess M. 2014: Multi-locus typing of Histomonas meleagridis isolates demonstrates the existence of two different genotypes. PLoS One 9: e92438. PubMed DOI
Bontrager M., Angert A.L. 2019: Gene flow improves fitness at a range edge under climate change. Evol. Lett. 3: 55-68. PubMed DOI
Brugerolle G., Lee J.J. 2001: Phylum Parabasalia. In: J.J. Lee, G.F. Leedale, D.J. Patterson and P.C. Bradbury (Eds.), The Illustrated Guide to the Protozoa. Second edition. Allen Press, Lawrence, Kansas, pp. 1196-1249.
Cepicka I., Hampl V., Kulda J. 2010: Critical taxonomic revision of parabasalids with description of one new genus and three new species. Protist 161: 400-433. PubMed DOI
Cupo L.K., Beckstead R.B. 2019: Heterakis gallinarum, the cecal nematode of gallinaceous birds: a critical review. Avian Dis. 63: 381-388. PubMed DOI
Daş G., Wachter L., Stehr M., Bilic I., Grafl B., Wernsdorf P., Metges C.C., Hess M., Liebhart D. 2021: Excretion of Histomonas meleagridis following experimental co-infection of distinct chicken lines with Heterakis gallinarum and Ascaridia galli. Parasit. Vectors 14: 323. PubMed DOI
Delgado-Viscogliosi P., Viscogliosi E., Gerbod D., Kulda J., Sogin M.L., Edgcomb V.P. 2000: Molecular phytogeny of parabasalids based on small subunit rRNA sequences, with emphasis on the Trichomonadinae subfamily. J. Euk. Microbiol. 47: 70-75. PubMed DOI
Dufernez F., Walker R.L., Noël C., Caby S., Mantini C., Delgado-Viscogliosi P., Ohkuma M., Kudo T., Capron M., Pierce R.J., Villanueva M.R., Viscogliosi E. 2007: Morphological and molecular identification of non-Tritrichomonas foetus trichomonad protozoa from the bovine preputial cavity. J. Euk. Microbiol. 54: 161-168. PubMed DOI
Ekroth A.K.E., Michael G., Stevens E.J., Ford S.A., King K.C. 2021: Host genotype and genetic diversity shape the evolution of a novel bacterial infection. ISME J. 15: 2146-2157. PubMed DOI
Esquenet C., De Herdt P., De Bosschere H., Ronsmans S., Ducatelle R., Van Erum J. 2003: An outbreak of histomoniasis in freerange layer hens. Avian Pathol. 32: 305-308. PubMed DOI
Farjallah S., Amor N., Montero F.E., Repullés-Albelda A., Villar-Torres M., Nasser Alagaili A., Merella P. 2024: Assessment of the genetic diversity of the monogenean gill parasite Lamellodiscus echeneis (Monogenea) infecting wild and cage-reared populations of Sparus aurata (Teleostei) from the Mediterranean Sea. Animals (Basel) 14: 2653. PubMed DOI
Gerbod D., Edgecomb V.P., Noel C., Zenner L., Wintjens R., Delgado-Viscogliosi P., Holder M.E., Sogin M.L., Viscogliosi E. 2001: Phylogenetic position of the trichomonad parasite of turkeys, Histomonas meleagridis (Smith) Tyzzer, inferred from small subunit rRNA sequence. J. Euk. Microbiol. 48: 498-504. PubMed DOI
Gerbod D., Noel C., Dolan M.F., Edgcomb V.P., Kitade O., Noda S., Dufernez F., Ohkuma M., Kudo T., Capron M., Sogin M.L., Viscogliosi E. 2002: Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Devescovinidae and Calonymphidae (Trichomonadea). Mol. Phylogen. Evol. 25: 545-556. PubMed DOI
Goudarzi F., Hemami M.R., Rancilhac L., Malekian M., Fakheran S., Elmer K.R., Steinfartz S. 2019: Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser's spotted newt (Neurergus kaiseri). Sci. Rep. 9: 6239. PubMed DOI
Hampl V., Cepicka I., Flegr J., Tachezy J., Kulda J. 2007: Morphological and molecular diversity of the monocercomonadid genera Monocercomonas, Hexamastix and Honigbergiella gen. nov. Protist. 158: 365-383. PubMed DOI
Honigberg B.M., Brugerolle G. 1990: Structure. In: B.M. Honigberg (Ed.), Trichomonads Parasitic in Humans. Springer-Verlag, New York, pp. 5-35. DOI
Kemp R.L., Reid W.M. 1965: Pathogenicity studies on Trichomonas gallinarum in domestic poultry. Poult. Sci. 44: 215-221. PubMed DOI
Kleina P., Bettim-Bandinelli J., Bonatto S.L., Benchimol M., Bogo M.R. 2004: Molecular phylogeny of Trichomonadidae family inferred from ITS-1, 5.8S rRNA and ITS-2 sequences. Int. J. Parasitol. 34: 963-970. PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018: MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35: 1547. PubMed DOI
Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. 2017: PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34: 772-773. PubMed DOI
Librado P., Rozas J. 2009: DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451. PubMed DOI
Lollis L., Gerhold R., McDougald L., Beckstead R. 2011: Molecular characterization of Histomonas meleagridis and other parabasalids in the United States using the 5.8S, ITS-1, and ITS-2 rRNA regions. J. Parasitol. 97: 610-615. PubMed DOI
Lund E.E., Chute A.M. 1972: Reciprocal responses of eight species of galliform birds and three parasites: Heterakis gallinarum, Histomonas meleagridis and Parahistomonas wenrichi. J. Parasitol. 58: 940-945. DOI
Malewitz T.D., Runnells R.A., Calhoun M.L. 1958: The pathology of experimentally produced histomoniasis in turkeys. Am. J. Vet. Res. 19: 181-185.
Malik S.B., Brochu C.D., Bilic I., Yuan J., Hess M. 2011: Phylogeny of parasitic Parabasalia and free-living relatives inferred from conventional markers vs. Rpb1, a single-copy gene. PLoS One 6: e20774. PubMed DOI
Mantini C., Dalia-Cornette J., Noda S., Van der Heijden H.M., Capron M. 2009: Molecular identification and phylogenetic relationships of trichomonad isolates of galliform birds inferred from nuclear small subunit rRNA gene sequences. Parasitol. Res. 106: 163-170. PubMed DOI
Maritz J.M., Land K.M., Carlton J.M., Hirt R.P. 2014: What is the importance of zoonotic trichomonads for human health? Trends Parasitol. 30: 333-341. PubMed DOI
Mweu M.M., Nielsen S.S., Halasa T., Toft N. 2012: Annual incidence, prevalence and transmission characteristics of Streptococcus agalactiae in Danish dairy herds. Prev. Vet. Med. 106: 244-250. PubMed DOI
Nguyen D.T., Bilic I., Jaskulska B., Hess M., Le D.Q., Hua L.N.L., Huynh V.V., Nguyen S.T., Vu-Khac H. 2015: Prevalence and genetic characterization of Histomonas meleagridis in chickens in Vietnam. Avian Dis. 59: 309-314. PubMed DOI
Noda S., Mantini C., Bordereau C., Kitade O., Dolan M.F., Viscogliosi E., Ohkuma M. 2009: Molecular phylogeny of Parabasalids with emphasis on the order Cristamonadida and its complex morphological evolution. Mol. Phylogenet. Evol. 52: 217-224. PubMed DOI
Noda S., Mantini C., Meloni D., Inoue J., Kitade O. 2012: Molecular phylogeny and evolution of parabasalia with improved taxon sampling and new protein markers of actin and elongation factor-1 alpha. PLoS One 7: e29938. PubMed DOI
Noël C., Noda S., Mantini C., Dolan M.F., Moriya S., Delgado-Viscogliosi P., Kudo T., Capron M., Pierce R.J., Ohkuma M., Viscogliosi E. 2007: Molecular phylogenetic position of the genera Stephanonympha and Caduceia (Parabasalia) inferred from nuclear small subunit rRNA gene sequences. J. Eukaryot Microbiol. 54: 93-99. PubMed DOI
Okonechnikov K., Golosova O., Fursov M., UGENE team 2012: Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28: 1166-1167. PubMed DOI
Sexton J.P., Hangartner S.B., Hoffmann A.A. 2014: Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68: 1-15. PubMed DOI
Stamatakis A. 2006: RaxMl-vi-hpc: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690. PubMed DOI
Stenzel D.J., Boreham P.F.L. 1996: Blastocysts hominis revisited. Clin. Microbiol. Rev. 9: 563-584. PubMed DOI
Tavalire H.F., Blouin M.S., Steinauer M.L. 2016: Genotypic variation in host response to infection affects parasite reproductive rate. Int. J. Parasitol. 46: 123-131. PubMed DOI
Vanacova S., Tachezy J., Kulda J., Flegr J. 1997: Characterization of trichomonad species and strains by PCR fingerprinting. J. Eukaryot Microbiol. 44: 545-552. PubMed DOI
Wernery U., Kinne J. 2002: Blackhead in Arabian red-legged partridge, stone curlew and spotted thick-knee (Dikkop). Falco 19: 19.