First genetic characterisation and phylogenetic analysis of Trichomonadida from Gallus gallus domesticus (Aves: Phasianidae) and its nematode parasite Heterakis gallinarum (Ascaridida: Heterakidae) in Tunisia

. 2025 Oct 02 ; 72 () : . [epub] 20251002

Jazyk angličtina Země Česko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41117327

Flagellated protozoa of the order Trichomonadida infect a variety of vertebrates, including poultry such as Gallus gallus domesticus (Linnaeus). Several trichomonad pathogens are of significant veterinary importance due to their role in diseases that cause high mortality rates in chickens. Despite the importance of Trichomonadida in poultry health, molecular studies on these protozoa in North Africa are limited. This study addresses this gap by investigating the genetic diversity and evolutionary relationships of Trichomonadida isolated from G. gallus domesticus and its nematode parasite Heterakis gallinarum (Schrank, 1788) in Tunisia, using a multilocus molecular approach with 18S rRNA and α-actinin 1 genes. Based on both markers, all Tunisian haplotypes, which clustered with those from France, were found to belong to genotype2. 18S rRNA analysis revealed the existence of protozoans such as Histomonas meleagridis (Smith, 1895) and Parahistomonas wenrichi Lund, 1963 in coinfection with H. gallinarum, confirming a possible mixed infection. Additionally, when analysing caecal samples, other Trichomonadida species were identified, including Simplicimonas sp. and Tetratrichomonas gallinarum (Martin et Robertson, 1911). These findings suggest a complex protozoan community within the studied hosts. Phylogenetic analysis revealed a close relationship between H. meleagridis and P. wenrichi, as well as between Simplicimonas sp. and the Monoceromonas-Tritrichomonas group. Both H. meleagridis genotypes 1 and 2 exhibited a sister-group relationship with P. wenrichi, with strong support for a common evolutionary origin. Tetratrichomonas gallinarum was basal in the tree, suggesting early divergence in the Trichomonadida lineage. This study provides, for the first time, insights into the genetic diversity of trichomonadids in Tunisia. The 18S rDNA locus proved to be effective for assessing the genetic diversity of H. meleagridis, P. wenrichi, T. gallinarum and Simplicimonas sp. and showed a possible mixed infection. The findings provide valuable insights into the genetic characteristics of these parasites in Tunisian poultry farms and contribute to the understanding of Trichomonadida diversity, enhancing disease control and prevention efforts.

Zobrazit více v PubMed

Adl S.M., Simpson A.G.B., Farmer M.A., Andersen R.A., Anderson O.R., Barta J.R., Bowser S.S., Brugerolle G., Fensome R.A., Fredericq S., James T.Y., Karpov S., Kugrens P., Krug J., Lane C.E., Lewis L.A., Lodge J., Lynn D.H., Mann D.G., McCourt R.M., Mendoza L., Moestrup O., Mozley-Standridge S.E., Nerad T.A., Shearer C.A., Smirnov A.V., Spiegel F.W., Taylor M.F.J.R. 2005: The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Euk. Microbiol. 52: 399-451. PubMed DOI

Adl S.M., Simpson A.G.B., Lane C.E., Lukeš J., Bass D., Bowser S.S., Brown M.W., Burki F., Dunthorn M., Hampl V., Heiss A., Hoppenrath M., Lara E., Gall L.L., Lynn D.H., McManus H., Mitchell E.A.D., Mozley-Stanridge S.E., Parfrey L.W., Pawlowski J., Rueckert S., Shadwick L., Schoch C.L., Smirnov A., Spiegel F.W. 2012: The revised classification of eukaryotes. J. Euk. Microbiol. 59: 429-493. PubMed DOI

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990: Basic local alignment search tool. J. Mol. Biol. 215: 403-410. PubMed DOI

Amor N., Farjallah S., Mohammed O.B., Alagaili A., Bahri-Sfar L. 2018: Molecular characterization of the nematode Heterakis gallinarum (Ascaridida: Heterakidae) infecting domestic chickens (Gallus gallus domesticus) in Tunisia. Turk. J. Vet. Anim. Sci. 42: 388-394. DOI

Barribeau S.M., Sadd B.M., Plessis L., Schmid-Hempel P. 2014: Gene expression differences underlying genotype-by-genotype specificity in a host-parasite system. Proc. Natl. Acad. Sci. USA 111: 3496-3501. PubMed DOI

Beer L.C., Petrone-Garcia V.M., Graham B.D., Hargis B.M., Tellez-Isaias G., Vuong C.N. 2022: Histomonosis in poultry: a comprehensive review. Front. Vet. Sci. 9: 880738. PubMed DOI

Bilic I., Jaskulska B., Souillard R., Liebhart D., Hess M. 2014: Multi-locus typing of Histomonas meleagridis isolates demonstrates the existence of two different genotypes. PLoS One 9: e92438. PubMed DOI

Bontrager M., Angert A.L. 2019: Gene flow improves fitness at a range edge under climate change. Evol. Lett. 3: 55-68. PubMed DOI

Brugerolle G., Lee J.J. 2001: Phylum Parabasalia. In: J.J. Lee, G.F. Leedale, D.J. Patterson and P.C. Bradbury (Eds.), The Illustrated Guide to the Protozoa. Second edition. Allen Press, Lawrence, Kansas, pp. 1196-1249.

Cepicka I., Hampl V., Kulda J. 2010: Critical taxonomic revision of parabasalids with description of one new genus and three new species. Protist 161: 400-433. PubMed DOI

Cupo L.K., Beckstead R.B. 2019: Heterakis gallinarum, the cecal nematode of gallinaceous birds: a critical review. Avian Dis. 63: 381-388. PubMed DOI

Daş G., Wachter L., Stehr M., Bilic I., Grafl B., Wernsdorf P., Metges C.C., Hess M., Liebhart D. 2021: Excretion of Histomonas meleagridis following experimental co-infection of distinct chicken lines with Heterakis gallinarum and Ascaridia galli. Parasit. Vectors 14: 323. PubMed DOI

Delgado-Viscogliosi P., Viscogliosi E., Gerbod D., Kulda J., Sogin M.L., Edgcomb V.P. 2000: Molecular phytogeny of parabasalids based on small subunit rRNA sequences, with emphasis on the Trichomonadinae subfamily. J. Euk. Microbiol. 47: 70-75. PubMed DOI

Dufernez F., Walker R.L., Noël C., Caby S., Mantini C., Delgado-Viscogliosi P., Ohkuma M., Kudo T., Capron M., Pierce R.J., Villanueva M.R., Viscogliosi E. 2007: Morphological and molecular identification of non-Tritrichomonas foetus trichomonad protozoa from the bovine preputial cavity. J. Euk. Microbiol. 54: 161-168. PubMed DOI

Ekroth A.K.E., Michael G., Stevens E.J., Ford S.A., King K.C. 2021: Host genotype and genetic diversity shape the evolution of a novel bacterial infection. ISME J. 15: 2146-2157. PubMed DOI

Esquenet C., De Herdt P., De Bosschere H., Ronsmans S., Ducatelle R., Van Erum J. 2003: An outbreak of histomoniasis in freerange layer hens. Avian Pathol. 32: 305-308. PubMed DOI

Farjallah S., Amor N., Montero F.E., Repullés-Albelda A., Villar-Torres M., Nasser Alagaili A., Merella P. 2024: Assessment of the genetic diversity of the monogenean gill parasite Lamellodiscus echeneis (Monogenea) infecting wild and cage-reared populations of Sparus aurata (Teleostei) from the Mediterranean Sea. Animals (Basel) 14: 2653. PubMed DOI

Gerbod D., Edgecomb V.P., Noel C., Zenner L., Wintjens R., Delgado-Viscogliosi P., Holder M.E., Sogin M.L., Viscogliosi E. 2001: Phylogenetic position of the trichomonad parasite of turkeys, Histomonas meleagridis (Smith) Tyzzer, inferred from small subunit rRNA sequence. J. Euk. Microbiol. 48: 498-504. PubMed DOI

Gerbod D., Noel C., Dolan M.F., Edgcomb V.P., Kitade O., Noda S., Dufernez F., Ohkuma M., Kudo T., Capron M., Sogin M.L., Viscogliosi E. 2002: Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Devescovinidae and Calonymphidae (Trichomonadea). Mol. Phylogen. Evol. 25: 545-556. PubMed DOI

Goudarzi F., Hemami M.R., Rancilhac L., Malekian M., Fakheran S., Elmer K.R., Steinfartz S. 2019: Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser's spotted newt (Neurergus kaiseri). Sci. Rep. 9: 6239. PubMed DOI

Hampl V., Cepicka I., Flegr J., Tachezy J., Kulda J. 2007: Morphological and molecular diversity of the monocercomonadid genera Monocercomonas, Hexamastix and Honigbergiella gen. nov. Protist. 158: 365-383. PubMed DOI

Honigberg B.M., Brugerolle G. 1990: Structure. In: B.M. Honigberg (Ed.), Trichomonads Parasitic in Humans. Springer-Verlag, New York, pp. 5-35. DOI

Kemp R.L., Reid W.M. 1965: Pathogenicity studies on Trichomonas gallinarum in domestic poultry. Poult. Sci. 44: 215-221. PubMed DOI

Kleina P., Bettim-Bandinelli J., Bonatto S.L., Benchimol M., Bogo M.R. 2004: Molecular phylogeny of Trichomonadidae family inferred from ITS-1, 5.8S rRNA and ITS-2 sequences. Int. J. Parasitol. 34: 963-970. PubMed DOI

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018: MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35: 1547. PubMed DOI

Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. 2017: PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34: 772-773. PubMed DOI

Librado P., Rozas J. 2009: DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451. PubMed DOI

Lollis L., Gerhold R., McDougald L., Beckstead R. 2011: Molecular characterization of Histomonas meleagridis and other parabasalids in the United States using the 5.8S, ITS-1, and ITS-2 rRNA regions. J. Parasitol. 97: 610-615. PubMed DOI

Lund E.E., Chute A.M. 1972: Reciprocal responses of eight species of galliform birds and three parasites: Heterakis gallinarum, Histomonas meleagridis and Parahistomonas wenrichi. J. Parasitol. 58: 940-945. DOI

Malewitz T.D., Runnells R.A., Calhoun M.L. 1958: The pathology of experimentally produced histomoniasis in turkeys. Am. J. Vet. Res. 19: 181-185.

Malik S.B., Brochu C.D., Bilic I., Yuan J., Hess M. 2011: Phylogeny of parasitic Parabasalia and free-living relatives inferred from conventional markers vs. Rpb1, a single-copy gene. PLoS One 6: e20774. PubMed DOI

Mantini C., Dalia-Cornette J., Noda S., Van der Heijden H.M., Capron M. 2009: Molecular identification and phylogenetic relationships of trichomonad isolates of galliform birds inferred from nuclear small subunit rRNA gene sequences. Parasitol. Res. 106: 163-170. PubMed DOI

Maritz J.M., Land K.M., Carlton J.M., Hirt R.P. 2014: What is the importance of zoonotic trichomonads for human health? Trends Parasitol. 30: 333-341. PubMed DOI

Mweu M.M., Nielsen S.S., Halasa T., Toft N. 2012: Annual incidence, prevalence and transmission characteristics of Streptococcus agalactiae in Danish dairy herds. Prev. Vet. Med. 106: 244-250. PubMed DOI

Nguyen D.T., Bilic I., Jaskulska B., Hess M., Le D.Q., Hua L.N.L., Huynh V.V., Nguyen S.T., Vu-Khac H. 2015: Prevalence and genetic characterization of Histomonas meleagridis in chickens in Vietnam. Avian Dis. 59: 309-314. PubMed DOI

Noda S., Mantini C., Bordereau C., Kitade O., Dolan M.F., Viscogliosi E., Ohkuma M. 2009: Molecular phylogeny of Parabasalids with emphasis on the order Cristamonadida and its complex morphological evolution. Mol. Phylogenet. Evol. 52: 217-224. PubMed DOI

Noda S., Mantini C., Meloni D., Inoue J., Kitade O. 2012: Molecular phylogeny and evolution of parabasalia with improved taxon sampling and new protein markers of actin and elongation factor-1 alpha. PLoS One 7: e29938. PubMed DOI

Noël C., Noda S., Mantini C., Dolan M.F., Moriya S., Delgado-Viscogliosi P., Kudo T., Capron M., Pierce R.J., Ohkuma M., Viscogliosi E. 2007: Molecular phylogenetic position of the genera Stephanonympha and Caduceia (Parabasalia) inferred from nuclear small subunit rRNA gene sequences. J. Eukaryot Microbiol. 54: 93-99. PubMed DOI

Okonechnikov K., Golosova O., Fursov M., UGENE team 2012: Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28: 1166-1167. PubMed DOI

Sexton J.P., Hangartner S.B., Hoffmann A.A. 2014: Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68: 1-15. PubMed DOI

Stamatakis A. 2006: RaxMl-vi-hpc: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690. PubMed DOI

Stenzel D.J., Boreham P.F.L. 1996: Blastocysts hominis revisited. Clin. Microbiol. Rev. 9: 563-584. PubMed DOI

Tavalire H.F., Blouin M.S., Steinauer M.L. 2016: Genotypic variation in host response to infection affects parasite reproductive rate. Int. J. Parasitol. 46: 123-131. PubMed DOI

Vanacova S., Tachezy J., Kulda J., Flegr J. 1997: Characterization of trichomonad species and strains by PCR fingerprinting. J. Eukaryot Microbiol. 44: 545-552. PubMed DOI

Wernery U., Kinne J. 2002: Blackhead in Arabian red-legged partridge, stone curlew and spotted thick-knee (Dikkop). Falco 19: 19.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...