Improved outcome of HSCT in STAT1 gain-of-function disease following JAK inhibition bridging

. 2025 Sep 01 ; 1 (3) : . [epub] 20250730

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41142635

Grantová podpora
UH3 TR003908 NCATS NIH HHS - United States
K08 AI137301 NIAID NIH HHS - United States
U54 AI082973 NIAID NIH HHS - United States
UG3 TR003908 NCATS NIH HHS - United States
R21 AI173539 NIAID NIH HHS - United States

Germline gain-of-function (GOF) mutations in signal transducer and activator of transcription 1 (STAT1) are associated with infections, including chronic mucocutaneous candidiasis and autoimmunity. Morbidity is high, and disease manifestations can be life-threatening. Curative allogeneic hematopoietic stem cell transplantation (HSCT) historically has had poor outcomes. We identified 36 patients with STAT1 GOF disease, receiving 40 HSCT procedures in 2010-2023, in a combined effort of the EBMT-IEWP and the PIDTC. Median age at first transplant was 11 years (range 1 - 33). Indications for HSCT were combined immunodeficiency, severe and/or refractory infections, and autoimmunity. Acute GvHD occurred in 22/40 HSCT procedures; 5 patients suffered from grade III/IV acute GvHD. One patient had chronic GvHD. Overall survival was 72.2%, and event-free survival was 55.6%, markedly improved from an earlier report on HSCT for STAT1 GOF disease. Patients with an HCT-CI score of 1 or higher had worse outcome. Pre-treatment with Janus kinase (JAK) inhibitors was associated with better event-free survival.

Aflac Cancer and Blood Disorders Center Children's Healthcare of Atlanta Emory University School of Medicine United States of America

Allen Institute for Immunology Seattle Washington United States of America

Allergy and Immunology Hospital Rebagliati Lima Peru

Cancer and Blood Disorders Institute Johns Hopkins All Children's Hospital St Petersburg FL United States of America

Children's Hospital at Westmead Westmead Australia

Department of Hematopoietic Stem Cell Transplantation Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology Moscow Russia

Department of Paediatric Immunology Children's Health Ireland at Crumlin Dublin Ireland

Department of Paediatrics and University Center for Rare Diseases Medizinische Fakultät Carl Gustav Carus Technische Universität Dresden Germany

Department of Pediatric Immunology University Medical Center Utrecht the Netherlands

Department of Pediatrics Division of Pediatric Allergy Immunology and Bone Marrow Transplantation University of California San Francisco United States of America

Department of Pediatrics Sahlgrenska Academy University of Gothenburg Sweden

Department of Pediatrics University Hospital Leipzig Leipzig Germany

Division of Pediatric Allergy and Immunology Marmara University Istanbul Turkey

Division of Pediatric Immunology Bursa Uludag University Bursa Turkey

Division of Pediatric Stem Cell Transplantation and Immunology Department of Pediatric Hematology and Oncology University Medical Center Hamburg Eppendorf Hamburg Germany

German Center for Child and Adolescent Health partner site Leipzig Dresden Dresden Germany

Haematopoietic Stem Cell Transplantation department Great North Children's Hospital Royal Victoria Infirmary Newcastle United Kingdom

Hopital Necker Enfants Malades Paris France

Hospital de la Santa Creu i Sant Pau Barcelona Spain

İstanbul Üniversitesi Cerrahpaşa Istanbul Turkey

Kinderklinik und Kinderpoliklinik im Dr von Haunerschen Kinderspital Ludwig Maximilians Universität München Munich Germany

Memorial Sloan Kettering Cancer Centre New York United States of America

Paediatric Rheumatology and Immunology Service KK Women's and Children's Hospital Singapore

Pediatric Infectious Diseases and Immunodeficiencies Unit Hospital Universitari Vall d'Hebron Vall d'Hebron Research Institute Barcelona Catalonia Spain

Queen Silvia Children's Hospital Gothenborg Sweden

Stanford University California United States of America

Texas Children's Hospital Houston Texas Unites States of America

The Hospital for Sick Children Toronto Canada

Universitat Autònoma de Barcelona Spain

University College London London United Kingdom

University Hospital in Motol Prague Czech Republic

Willem Alexander Children's Hospital Department of Pediatrics Pediatric Stem cell Transplantation program Leiden University Medical Center Leiden The Netherlands

Zobrazit více v PubMed

van de Veerdonk, F.L., Plantinga T.S., Hoischen A., Smeekens S.P., Joosten L.A.B., Gilissen C., Arts P., Rosentul D.C., Carmichael A.J., Smits-van der Graaf C.A., et al. 2011. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. New Engl. J. Med. 365:54–61. 10.1056/NEJMoa1100102 PubMed DOI

Liu, L., Okada S., Kong X.-F., Kreins A.Y., Cypowyj S., Abhyankar A., Toubiana J., Itan Y., Audry M., Nitschke P., et al. 2011. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208:1635–1648. 10.1084/jem.20110958 PubMed DOI PMC

Toubiana, J., Okada S., Hiller J., Oleastro M., Lagos Gomez M., Aldave Becerra J.C., Ouachée-Chardin M., Fouyssac F., Girisha K.M., Etzioni A., et al. 2016. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 127:3154–3164. 10.1182/blood-2015-11-679902 PubMed DOI PMC

Okada, S., Asano T., Moriya K., Boisson-Dupuis S., Kobayashi M., Casanova J.-L., and Puel A.. 2020. Human STAT1 gain-of-function heterozygous mutations: Chronic mucocutaneous candidiasis and type I interferonopathy. J. Clin. Immunol. 40:1065–1081. 10.1007/s10875-020-00847-x PubMed DOI PMC

Forbes, L.R., Vogel T.P., Cooper M.A., Castro-Wagner J., Schussler E., Weinacht K.G., Plant A.S., Su H.C., Allenspach E.J., Slatter M., et al. 2018. Jakinibs for the treatment of immune dysregulation in patients with gain-of-function signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. J. Allergy Clin. Immunol. 142:1665–1669. 10.1016/j.jaci.2018.07.020 PubMed DOI PMC

Deyà-Martínez, A., Rivière J.G., Roxo-Junior P., Ramakers J., Bloomfield M., Guisado Hernandez P., Blanco Lobo P., Abu Jamra S.R., Esteve-Sole A., Kanderova V., et al. 2022. Impact of JAK inhibitors in pediatric patients with STAT1 gain of function (GOF) mutations—10 children and review of the literature. J. Clin. Immunol. 42:1071–1082. 10.1007/s10875-022-01257-x PubMed DOI PMC

Fischer, M., Olbrich P., Hadjadj J., Aumann V., Bakhtiar S., Barlogis V., von Bismarck P., Bloomfield M., Booth C., Buddingh E.P., et al. 2024. JAK inhibitor treatment for inborn errors of JAK/STAT signaling: An ESID/EBMT-IEWP retrospective study. J. Allergy Clin. Immunol. 153:275–286.e18. 10.1016/j.jaci.2023.10.018 PubMed DOI

Higgins, E., Al Shehri T., McAleer M.A., Conlon N., Feighery C., Lilic D., and Irvine A.D.. 2015. Use of ruxolitinib to successfully treat chronic mucocutaneous candidiasis caused by gain-of-function signal transducer and activator of transcription 1 (STAT1) mutation. J. Allergy Clin. Immunol. 135:551–553.e3. 10.1016/j.jaci.2014.12.1867 PubMed DOI

Mössner, R., Diering N., Bader O., Forkel S., Overbeck T., Gross U., Grimbacher B., Schön M.P., and Buhl T.. 2016. Ruxolitinib induces interleukin 17 and ameliorates chronic mucocutaneous candidiasis caused by STAT1 gain-of-function mutation. Clin. Infect. Dis. 62:951–953. 10.1093/cid/ciw020 PubMed DOI

Weinacht, K.G., Charbonnier L.-M., Alroqi F., Plant A., Qiao Q., Wu H., Ma C., Torgerson T.R., Rosenzweig S.D., Fleisher T.A., et al. 2017. Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. J. Allergy Clin. Immunol. 139:1629–1640.e2. 10.1016/j.jaci.2016.11.022 PubMed DOI PMC

Acker, K.P., Borlack R., Iuga A., Remotti H.E., Soderquist C.R., Okada S., Tsumura M., Casanova J.-L., Picoraro J., Puel A., et al. 2020. Ruxolitinib response in an infant with very-early-onset inflammatory bowel disease and gain-of-function STAT1 mutation. J. Pediatr. Gastroenterol. Nutr. 71:e132–e133. 10.1097/MPG.0000000000002854 PubMed DOI

Moriya, K., Suzuki T., Uchida N., Nakano T., Katayama S., Irie M., Rikiishi T., Niizuma H., Okada S., Imai K., et al. 2020. Ruxolitinib treatment of a patient with steroid-dependent severe autoimmunity due to STAT1 gain-of-function mutation. Int. J. Hematol. 112:258–262. 10.1007/s12185-020-02860-7 PubMed DOI

Chaimowitz, N.S., Ebenezer S.J., Hanson I.C., Anderson M., and Forbes L.R.. 2020. STAT1 gain of function, type 1 diabetes, and reversal with JAK inhibition. N. Engl. J. Med. 383:1494–1496. 10.1056/NEJMc2022226 PubMed DOI

Borgström, E.W., Edvinsson M., Pérez L.P., Norlin A.C., Enoksson S.L., Hansen S., Fasth A., Friman V., Kämpe O., Månsson R., et al. 2023. Three adult cases of STAT1 gain-of-function with chronic mucocutaneous candidiasis treated with JAK inhibitors. J. Clin. Immunol. 43:136–150. 10.1007/s10875-022-01351-0 PubMed DOI PMC

Al Shehri, T., Gilmour K., Gothe F., Loughlin S., Bibi S., Rowan A.D., Grainger A., Mohanadas T., Cant A.J., Slatter M.A., et al. 2019. Novel gain-of-function mutation in Stat1 sumoylation site leads to CMC/CID phenotype responsive to ruxolitinib. J. Clin. Immunol. 39:776–785. 10.1007/s10875-019-00687-4 PubMed DOI

Kayaoglu, B., Kasap N., Yilmaz N.S., Charbonnier L.M., Geckin B., Akcay A., Eltan S.B., Ozturk G., Ozen A., Karakoc-Aydiner E., et al. 2021. Stepwise reversal of immune dysregulation due to STAT1 gain-of-function mutation following ruxolitinib bridge therapy and transplantation. J. Clin. Immunol. 41:769–779. 10.1007/s10875-020-00943-y PubMed DOI

Zimmerman, O., Rösler B., Zerbe C.S., Rosen L.B., Hsu A.P., Uzel G., Freeman A.F., Sampaio E.P., Rosenzweig S.D., Kuehn H.S., et al. 2017. Risks of ruxolitinib in STAT1 gain-of-function-associated severe fungal disease. Open Forum Infect. Dis. 4:ofx202. 10.1093/ofid/ofx202 PubMed DOI PMC

Leiding, J.W., Okada S., Hagin D., Abinun M., Shcherbina A., Balashov D.N., Kim V.H.D., Ovadia A., Guthery S.L., Pulsipher M., et al. 2018. Hematopoietic stem cell transplantation in patients with gain-of-function signal transducer and activator of transcription 1 mutations. J. Allergy Clin. Immunol. 141:704–717.e5. 10.1016/j.jaci.2017.03.049 PubMed DOI PMC

Kiykim, A., Charbonnier L.M., Akcay A., Karakoc-Aydiner E., Ozen A., Ozturk G., Chatila T.A., and Baris S.. 2019. Hematopoietic stem cell transplantation in patients with heterozygous STAT1 gain-of-function mutation. J. Clin. Immunol. 39:37–44. 10.1007/s10875-018-0575-y PubMed DOI PMC

Kunvarjee, B., Bidgoli A., Madan R.P., Vidal E., McAvoy D., Hosszu K.K., Scaradavou A., Spitzer B.G., Curran K.J., Cancio M., et al. 2023. Emapalumab as bridge to hematopoietic cell transplant for STAT1 gain-of-function mutations. J. Allergy Clin. Immunol. 152:815–817. 10.1016/j.jaci.2023.05.016 PubMed DOI PMC

Grunebaum, E., Kim V.H.-D., Somers G.R., Shammas A., and Roifman C.M.. 2016. Bone marrow transplantation for monoallelic signal transducer and activator of transcription 1 deficiency. J. Allergy Clin. Immunol. 138:612–615.e1. 10.1016/j.jaci.2016.02.009 PubMed DOI

Aldave, J.C., Cachay E., Núñez L., Chunga A., Murillo S., Cypowyj S., Bustamante J., Puel A., Casanova J.-L., and Koo A.. 2013. A 1-year-old girl with a gain-of-function STAT1 mutation treated with hematopoietic stem cell transplantation. J. Clin. Immunol. 33:1273–1275. 10.1007/s10875-013-9947-5 PubMed DOI

Merli, P., I. Caruana, De Vito R., Strocchio L., Weber G., Del Bufalo F., Buatois V., Montanari P., Cefalo M.R., Pitisci A., et al. 2019. Role of interferon-γ in immune-mediated graft failure after allogeneic hematopoietic stem cell transplantation. Haematologica. 104:2314–2323. 10.3324/haematol.2019.216101 PubMed DOI PMC

Meesilpavikkai, K., Dik W.A., Schrijver B., Nagtzaam N.M.A., van Rijswijk A., Driessen G.J., van der Spek P.J., van Hagen P.M., and Dalm V.A.. 2017. A novel heterozygous mutation in the STAT1 SH2 domain causes chronic mucocutaneous candidiasis, atypically diverse infections, autoimmunity, and impaired cytokine regulation. Front. Immunol. 8:274. 10.3389/fimmu.2017.00274 PubMed DOI PMC

Smyth, A.E., Kaleviste E., Snow A., Kisand K., McMahon C.J., Cant A.J., and Leahy T.R.. 2018. Aortic calcification in a patient with a gain-of-function STAT1 mutation. J. Clin. Immunol. 38:468–470. 10.1007/s10875-018-0513-z PubMed DOI

Castor Electronic Data Capture. 2019. https://castoredc.com.

Sorror, M.L., Maris M.B., Storb R., Baron F., Sandmaier B.M., Maloney D.G., and Storer B.. 2005. Hematopoietic cell transplantation (HCT)-specific comorbidity index: A new tool for risk assessment before allogeneic HCT. Blood. 106:2912–2919. 10.1182/blood-2005-05-2004 PubMed DOI PMC

Lankester, A.C., Albert M.H., Booth C., Gennery A.R., Güngör T., Hönig M., Morris E.C., Moshous D., Neven B., Schulz A., et al. 2021. EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transpl. 56:2052–2062. 10.1038/s41409-021-01378-8 PubMed DOI PMC

Schoemans, H.M., Lee S.J., Ferrara J.L., Wolff D., Levine J.E., Schultz K.R., Shaw B.E., Flowers M.E., Ruutu T., Greinix H., et al. 2018. EBMT-NIH-CIBMTR Task Force position statement on standardized terminology & guidance for graft-versus-host disease assessment. Bone Marrow Transpl. 53:1401–1415. 10.1038/s41409-018-0204-7 PubMed DOI PMC

Jagasia, M.H., Greinix H.T., Arora M., Williams K.M., Wolff D., Cowen E.W., Palmer J., Weisdorf D., Treister N.S., Cheng G.-S., et al. 2015. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. The 2014 diagnosis and staging working group report. Biol. Blood Marrow Transpl. 21:389–401.e1. 10.1016/j.bbmt.2014.12.001 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...