Improved outcome of HSCT in STAT1 gain-of-function disease following JAK inhibition bridging
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
UH3 TR003908
NCATS NIH HHS - United States
K08 AI137301
NIAID NIH HHS - United States
U54 AI082973
NIAID NIH HHS - United States
UG3 TR003908
NCATS NIH HHS - United States
R21 AI173539
NIAID NIH HHS - United States
PubMed
41142635
PubMed Central
PMC12551681
DOI
10.70962/jhi.20250027
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Germline gain-of-function (GOF) mutations in signal transducer and activator of transcription 1 (STAT1) are associated with infections, including chronic mucocutaneous candidiasis and autoimmunity. Morbidity is high, and disease manifestations can be life-threatening. Curative allogeneic hematopoietic stem cell transplantation (HSCT) historically has had poor outcomes. We identified 36 patients with STAT1 GOF disease, receiving 40 HSCT procedures in 2010-2023, in a combined effort of the EBMT-IEWP and the PIDTC. Median age at first transplant was 11 years (range 1 - 33). Indications for HSCT were combined immunodeficiency, severe and/or refractory infections, and autoimmunity. Acute GvHD occurred in 22/40 HSCT procedures; 5 patients suffered from grade III/IV acute GvHD. One patient had chronic GvHD. Overall survival was 72.2%, and event-free survival was 55.6%, markedly improved from an earlier report on HSCT for STAT1 GOF disease. Patients with an HCT-CI score of 1 or higher had worse outcome. Pre-treatment with Janus kinase (JAK) inhibitors was associated with better event-free survival.
Allen Institute for Immunology Seattle Washington United States of America
Allergy and Immunology Hospital Rebagliati Lima Peru
Children's Hospital at Westmead Westmead Australia
Department of Paediatric Immunology Children's Health Ireland at Crumlin Dublin Ireland
Department of Pediatric Immunology University Medical Center Utrecht the Netherlands
Department of Pediatrics Sahlgrenska Academy University of Gothenburg Sweden
Department of Pediatrics University Hospital Leipzig Leipzig Germany
Division of Pediatric Allergy and Immunology Marmara University Istanbul Turkey
Division of Pediatric Immunology Bursa Uludag University Bursa Turkey
German Center for Child and Adolescent Health partner site Leipzig Dresden Dresden Germany
Hopital Necker Enfants Malades Paris France
Hospital de la Santa Creu i Sant Pau Barcelona Spain
İstanbul Üniversitesi Cerrahpaşa Istanbul Turkey
Memorial Sloan Kettering Cancer Centre New York United States of America
Paediatric Rheumatology and Immunology Service KK Women's and Children's Hospital Singapore
Queen Silvia Children's Hospital Gothenborg Sweden
Stanford University California United States of America
Texas Children's Hospital Houston Texas Unites States of America
The Hospital for Sick Children Toronto Canada
Universitat Autònoma de Barcelona Spain
University College London London United Kingdom
Zobrazit více v PubMed
van de Veerdonk, F.L., Plantinga T.S., Hoischen A., Smeekens S.P., Joosten L.A.B., Gilissen C., Arts P., Rosentul D.C., Carmichael A.J., Smits-van der Graaf C.A., et al. 2011. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. New Engl. J. Med. 365:54–61. 10.1056/NEJMoa1100102 PubMed DOI
Liu, L., Okada S., Kong X.-F., Kreins A.Y., Cypowyj S., Abhyankar A., Toubiana J., Itan Y., Audry M., Nitschke P., et al. 2011. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208:1635–1648. 10.1084/jem.20110958 PubMed DOI PMC
Toubiana, J., Okada S., Hiller J., Oleastro M., Lagos Gomez M., Aldave Becerra J.C., Ouachée-Chardin M., Fouyssac F., Girisha K.M., Etzioni A., et al. 2016. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 127:3154–3164. 10.1182/blood-2015-11-679902 PubMed DOI PMC
Okada, S., Asano T., Moriya K., Boisson-Dupuis S., Kobayashi M., Casanova J.-L., and Puel A.. 2020. Human STAT1 gain-of-function heterozygous mutations: Chronic mucocutaneous candidiasis and type I interferonopathy. J. Clin. Immunol. 40:1065–1081. 10.1007/s10875-020-00847-x PubMed DOI PMC
Forbes, L.R., Vogel T.P., Cooper M.A., Castro-Wagner J., Schussler E., Weinacht K.G., Plant A.S., Su H.C., Allenspach E.J., Slatter M., et al. 2018. Jakinibs for the treatment of immune dysregulation in patients with gain-of-function signal transducer and activator of transcription 1 (STAT1) or STAT3 mutations. J. Allergy Clin. Immunol. 142:1665–1669. 10.1016/j.jaci.2018.07.020 PubMed DOI PMC
Deyà-Martínez, A., Rivière J.G., Roxo-Junior P., Ramakers J., Bloomfield M., Guisado Hernandez P., Blanco Lobo P., Abu Jamra S.R., Esteve-Sole A., Kanderova V., et al. 2022. Impact of JAK inhibitors in pediatric patients with STAT1 gain of function (GOF) mutations—10 children and review of the literature. J. Clin. Immunol. 42:1071–1082. 10.1007/s10875-022-01257-x PubMed DOI PMC
Fischer, M., Olbrich P., Hadjadj J., Aumann V., Bakhtiar S., Barlogis V., von Bismarck P., Bloomfield M., Booth C., Buddingh E.P., et al. 2024. JAK inhibitor treatment for inborn errors of JAK/STAT signaling: An ESID/EBMT-IEWP retrospective study. J. Allergy Clin. Immunol. 153:275–286.e18. 10.1016/j.jaci.2023.10.018 PubMed DOI
Higgins, E., Al Shehri T., McAleer M.A., Conlon N., Feighery C., Lilic D., and Irvine A.D.. 2015. Use of ruxolitinib to successfully treat chronic mucocutaneous candidiasis caused by gain-of-function signal transducer and activator of transcription 1 (STAT1) mutation. J. Allergy Clin. Immunol. 135:551–553.e3. 10.1016/j.jaci.2014.12.1867 PubMed DOI
Mössner, R., Diering N., Bader O., Forkel S., Overbeck T., Gross U., Grimbacher B., Schön M.P., and Buhl T.. 2016. Ruxolitinib induces interleukin 17 and ameliorates chronic mucocutaneous candidiasis caused by STAT1 gain-of-function mutation. Clin. Infect. Dis. 62:951–953. 10.1093/cid/ciw020 PubMed DOI
Weinacht, K.G., Charbonnier L.-M., Alroqi F., Plant A., Qiao Q., Wu H., Ma C., Torgerson T.R., Rosenzweig S.D., Fleisher T.A., et al. 2017. Ruxolitinib reverses dysregulated T helper cell responses and controls autoimmunity caused by a novel signal transducer and activator of transcription 1 (STAT1) gain-of-function mutation. J. Allergy Clin. Immunol. 139:1629–1640.e2. 10.1016/j.jaci.2016.11.022 PubMed DOI PMC
Acker, K.P., Borlack R., Iuga A., Remotti H.E., Soderquist C.R., Okada S., Tsumura M., Casanova J.-L., Picoraro J., Puel A., et al. 2020. Ruxolitinib response in an infant with very-early-onset inflammatory bowel disease and gain-of-function STAT1 mutation. J. Pediatr. Gastroenterol. Nutr. 71:e132–e133. 10.1097/MPG.0000000000002854 PubMed DOI
Moriya, K., Suzuki T., Uchida N., Nakano T., Katayama S., Irie M., Rikiishi T., Niizuma H., Okada S., Imai K., et al. 2020. Ruxolitinib treatment of a patient with steroid-dependent severe autoimmunity due to STAT1 gain-of-function mutation. Int. J. Hematol. 112:258–262. 10.1007/s12185-020-02860-7 PubMed DOI
Chaimowitz, N.S., Ebenezer S.J., Hanson I.C., Anderson M., and Forbes L.R.. 2020. STAT1 gain of function, type 1 diabetes, and reversal with JAK inhibition. N. Engl. J. Med. 383:1494–1496. 10.1056/NEJMc2022226 PubMed DOI
Borgström, E.W., Edvinsson M., Pérez L.P., Norlin A.C., Enoksson S.L., Hansen S., Fasth A., Friman V., Kämpe O., Månsson R., et al. 2023. Three adult cases of STAT1 gain-of-function with chronic mucocutaneous candidiasis treated with JAK inhibitors. J. Clin. Immunol. 43:136–150. 10.1007/s10875-022-01351-0 PubMed DOI PMC
Al Shehri, T., Gilmour K., Gothe F., Loughlin S., Bibi S., Rowan A.D., Grainger A., Mohanadas T., Cant A.J., Slatter M.A., et al. 2019. Novel gain-of-function mutation in Stat1 sumoylation site leads to CMC/CID phenotype responsive to ruxolitinib. J. Clin. Immunol. 39:776–785. 10.1007/s10875-019-00687-4 PubMed DOI
Kayaoglu, B., Kasap N., Yilmaz N.S., Charbonnier L.M., Geckin B., Akcay A., Eltan S.B., Ozturk G., Ozen A., Karakoc-Aydiner E., et al. 2021. Stepwise reversal of immune dysregulation due to STAT1 gain-of-function mutation following ruxolitinib bridge therapy and transplantation. J. Clin. Immunol. 41:769–779. 10.1007/s10875-020-00943-y PubMed DOI
Zimmerman, O., Rösler B., Zerbe C.S., Rosen L.B., Hsu A.P., Uzel G., Freeman A.F., Sampaio E.P., Rosenzweig S.D., Kuehn H.S., et al. 2017. Risks of ruxolitinib in STAT1 gain-of-function-associated severe fungal disease. Open Forum Infect. Dis. 4:ofx202. 10.1093/ofid/ofx202 PubMed DOI PMC
Leiding, J.W., Okada S., Hagin D., Abinun M., Shcherbina A., Balashov D.N., Kim V.H.D., Ovadia A., Guthery S.L., Pulsipher M., et al. 2018. Hematopoietic stem cell transplantation in patients with gain-of-function signal transducer and activator of transcription 1 mutations. J. Allergy Clin. Immunol. 141:704–717.e5. 10.1016/j.jaci.2017.03.049 PubMed DOI PMC
Kiykim, A., Charbonnier L.M., Akcay A., Karakoc-Aydiner E., Ozen A., Ozturk G., Chatila T.A., and Baris S.. 2019. Hematopoietic stem cell transplantation in patients with heterozygous STAT1 gain-of-function mutation. J. Clin. Immunol. 39:37–44. 10.1007/s10875-018-0575-y PubMed DOI PMC
Kunvarjee, B., Bidgoli A., Madan R.P., Vidal E., McAvoy D., Hosszu K.K., Scaradavou A., Spitzer B.G., Curran K.J., Cancio M., et al. 2023. Emapalumab as bridge to hematopoietic cell transplant for STAT1 gain-of-function mutations. J. Allergy Clin. Immunol. 152:815–817. 10.1016/j.jaci.2023.05.016 PubMed DOI PMC
Grunebaum, E., Kim V.H.-D., Somers G.R., Shammas A., and Roifman C.M.. 2016. Bone marrow transplantation for monoallelic signal transducer and activator of transcription 1 deficiency. J. Allergy Clin. Immunol. 138:612–615.e1. 10.1016/j.jaci.2016.02.009 PubMed DOI
Aldave, J.C., Cachay E., Núñez L., Chunga A., Murillo S., Cypowyj S., Bustamante J., Puel A., Casanova J.-L., and Koo A.. 2013. A 1-year-old girl with a gain-of-function STAT1 mutation treated with hematopoietic stem cell transplantation. J. Clin. Immunol. 33:1273–1275. 10.1007/s10875-013-9947-5 PubMed DOI
Merli, P., I. Caruana, De Vito R., Strocchio L., Weber G., Del Bufalo F., Buatois V., Montanari P., Cefalo M.R., Pitisci A., et al. 2019. Role of interferon-γ in immune-mediated graft failure after allogeneic hematopoietic stem cell transplantation. Haematologica. 104:2314–2323. 10.3324/haematol.2019.216101 PubMed DOI PMC
Meesilpavikkai, K., Dik W.A., Schrijver B., Nagtzaam N.M.A., van Rijswijk A., Driessen G.J., van der Spek P.J., van Hagen P.M., and Dalm V.A.. 2017. A novel heterozygous mutation in the STAT1 SH2 domain causes chronic mucocutaneous candidiasis, atypically diverse infections, autoimmunity, and impaired cytokine regulation. Front. Immunol. 8:274. 10.3389/fimmu.2017.00274 PubMed DOI PMC
Smyth, A.E., Kaleviste E., Snow A., Kisand K., McMahon C.J., Cant A.J., and Leahy T.R.. 2018. Aortic calcification in a patient with a gain-of-function STAT1 mutation. J. Clin. Immunol. 38:468–470. 10.1007/s10875-018-0513-z PubMed DOI
Castor Electronic Data Capture. 2019. https://castoredc.com.
Sorror, M.L., Maris M.B., Storb R., Baron F., Sandmaier B.M., Maloney D.G., and Storer B.. 2005. Hematopoietic cell transplantation (HCT)-specific comorbidity index: A new tool for risk assessment before allogeneic HCT. Blood. 106:2912–2919. 10.1182/blood-2005-05-2004 PubMed DOI PMC
Lankester, A.C., Albert M.H., Booth C., Gennery A.R., Güngör T., Hönig M., Morris E.C., Moshous D., Neven B., Schulz A., et al. 2021. EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transpl. 56:2052–2062. 10.1038/s41409-021-01378-8 PubMed DOI PMC
Schoemans, H.M., Lee S.J., Ferrara J.L., Wolff D., Levine J.E., Schultz K.R., Shaw B.E., Flowers M.E., Ruutu T., Greinix H., et al. 2018. EBMT-NIH-CIBMTR Task Force position statement on standardized terminology & guidance for graft-versus-host disease assessment. Bone Marrow Transpl. 53:1401–1415. 10.1038/s41409-018-0204-7 PubMed DOI PMC
Jagasia, M.H., Greinix H.T., Arora M., Williams K.M., Wolff D., Cowen E.W., Palmer J., Weisdorf D., Treister N.S., Cheng G.-S., et al. 2015. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. The 2014 diagnosis and staging working group report. Biol. Blood Marrow Transpl. 21:389–401.e1. 10.1016/j.bbmt.2014.12.001 PubMed DOI PMC