Harnessing Colloidal Dispersion for Laccase-Driven Enzymatic Depolymerization of Polystyrene
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Carnot Institute 3BCAR
PAF_02
INRAE
University of Bordeaux
PubMed
41169041
DOI
10.1002/anie.202513937
Knihovny.cz E-zdroje
- Klíčová slova
- Biocatalysis, Laccase, Latex, Polystyrene, Upcycling,
- Publikační typ
- časopisecké články MeSH
Polystyrene (PS) is one of the most widely used synthetic polymers, with annual global production of around 20 million tons. However, its robust C─C backbone renders it highly recalcitrant to (bio)chemical depolymerization, and no sustainable re-/up-cycling method has yet been developed. Here, we establish a proof-of-concept for the efficient depolymerization of PS under mild aqueous conditions, using a laccase-mediator system (LMS) composed of Trametes versicolor laccase, 1-hydroxybenzotriazole (HBT), and ambient oxygen. To overcome substrate accessibility issues, PS is formulated into colloidally stable nanoparticles, promoting interfacial remote biocatalysis. Under such conditions, up to 99.9% decrease in molar mass is achieved from an initial PS of over 2 million g mol-1, synthesized by ab initio free-radical emulsion polymerization. This colloidal dispersion strategy is also effective for commercial PS and expanded PS waste processed by post-dispersion in surfactant-containing aqueous media. Mechanistic studies suggest that LMS-mediated depolymerization proceeds via HBT radical diffusion into PS nanoparticles, triggering hydrogen atom transfer (HAT)-based oxidation and β-scissions of PS chains. This approach provides an efficient method for PS depolymerization using aqueous conditions, ambient O2 and a native enzyme without harsh solvents or experimental conditions.
Zobrazit více v PubMed
R. Geyer, J. R. Jambeck, K. L. Law, Sci. Adv. 2017, 3, e1700782.
“Plastics–the fast Facts 2023•Plastics Europe” https://plasticseurope.org/knowledge‐hub/plastics‐the‐fast‐facts‐2023/, 2023.
Z. O. G. Schyns, M. P. Shaver, Macromol. Rapid Commun. 2021, 42, 2000415, https://doi.org/10.1002/marc.202000415.
B. D. Vogt, K. K. Stokes, S. K. Kumar, ACS Appl. Polym. Mater. 2021, 3, 4325–4346, https://doi.org/10.1021/acsapm.1c00648.
S. Kumar, E. Singh, R. Mishra, A. Kumar, S. Caucci, ChemSusChem 2021, 14, 3985–4006, https://doi.org/10.1002/cssc.202101631.
R.‐X. Yang, K. Jan, C.‐T. Chen, W.‐T. Chen, K. C.‐W. Wu, ChemSusChem 2022, 15, e202200171.
S. Oh, E. E. Stache, Chem. Soc. Rev. 2024, 53, 7309–7327, https://doi.org/10.1039/D4CS00407H.
R. A. Clark, M. P. Shaver, Chem. Rev. 2024, 124, 2617–2650, https://doi.org/10.1021/acs.chemrev.3c00739.
C. Jehanno, J. W. Alty, M. Roosen, S. De Meester, A. P. Dove, E. Y.‐X. Chen, F. A. Leibfarth, H. Sardon, Nature 2022, 603, 803–814, https://doi.org/10.1038/s41586‐021‐04350‐0.
G. R. Jones, R. Whitfield, H. S. Wang, N. De Alwis Watuthanthrige, M.‐N. Antonopoulou, V. Lohmann, A. Anastasaki, Macromolecules 2025, 58, 2210–2223, https://doi.org/10.1021/acs.macromol.4c02690.
L. Wimberger, G. Ng, C. Boyer, Nat. Commun. 2024, 15, 2510, https://doi.org/10.1038/s41467‐024‐46656‐3.
A.‐L. De Abreu, D. Taton, D. M. Bassani, Angew. Chem. Int. Ed. 2025, 64, e202418680.
V. Tournier, S. Duquesne, F. Guillamot, H. Cramail, D. Taton, A. Marty, I. André, Chem. Rev. 2023, 123, 5612–5701, https://doi.org/10.1021/acs.chemrev.2c00644.
C.‐C. Chen, L. Dai, L. Ma, R.‐T. Guo, Nat. Rev. Chem. 2020, 4, 114–126, https://doi.org/10.1038/s41570‐020‐0163‐6.
Enzymatic Plastic Degradation, (Eds: G. Weber, U. T. Bornscheuer, R. Wei), Academic Press, Cambridge, CA San Diego, CA Oxford London 2021.
S. Yoshida, K. Hiraga, T. Takehana, I. Taniguchi, H. Yamaji, Y. Maeda, K. Toyohara, K. Miyamoto, Y. Kimura, K. Oda, Science 2016, 351, 1196–1199, https://doi.org/10.1126/science.aad6359.
V. Tournier, C. M. Topham, A. Gilles, B. David, C. Folgoas, E. Moya‐Leclair, E. Kamionka, M.‐L. Desrousseaux, H. Texier, S. Gavalda, M. Cot, E. Guémard, M. Dalibey, J. Nomme, G. Cioci, S. Barbe, M. Chateau, I. André, S. Duquesne, A. Marty, Nature 2020, 580, 216–219, https://doi.org/10.1038/s41586‐020‐2149‐4.
N. F. Zaaba, M. Jaafar, Polym. Eng. Sci. 2020, 60, 2061–2075, https://doi.org/10.1002/pen.25511.
M. Guicherd, M. Ben Khaled, M. Guéroult, J. Nomme, M. Dalibey, F. Grimaud, P. Alvarez, E. Kamionka, S. Gavalda, M. Noël, M. Vuillemin, E. Amillastre, D. Labourdette, G. Cioci, V. Tournier, V. Kitpreechavanich, P. Dubois, I. André, S. Duquesne, A. Marty, Nature 2024, 631, 884–890.
S. Ghatge, Y. Yang, J.‐H. Ahn, H.‐G. Hur, Appl. Biol. Chem. 2020, 63, 27, https://doi.org/10.1186/s13765‐020‐00511‐3.
J. Jin, J. Arciszewski, K. Auclair, Z. Jia, J. Hazard. Mater. 2023, 460, 132449, https://doi.org/10.1016/j.jhazmat.2023.132449.
Y.‐B. Kim, S. Kim, C. Park, S.‐J. Yeom, Curr. Opin. Syst. Biol. 2024, 37, 100505, https://doi.org/10.1016/j.coisb.2024.100505.
T. Oiffer, F. Leipold, P. Süss, D. Breite, J. Griebel, M. Khurram, Y. Branson, E. de Vries, A. Schulze, C. A. Helm, R. Wei, U. T. Bornscheuer, Angew. Chem. Int. Ed. 2024, 63, e202415012, https://doi.org/10.1002/anie.202415012.
A. A. Stepnov, E. Lopez‐Tavera, R. Klauer, C. L. Lincoln, R. R. Chowreddy, G. T. Beckham, V. G. H. Eijsink, K. Solomon, M. Blenner, G. Vaaje‐Kolstad, Nat. Commun. 2024, 15, 8501, https://doi.org/10.1038/s41467‐024‐52665‐z.
J. R. Wünsch, Polystyrene: Synthesis, Production and Applications, Rapra Technology Ltd, Shropshire 2000,.
H. R. Kim, H. M. Lee, H. C. Yu, E. Jeon, S. Lee, J. Li, D.‐H. Kim, Environ. Sci. Technol. 2020, 54, 6987–6996, https://doi.org/10.1021/acs.est.0c01495.
H. R. Kim, H. Y. Koh, H. Shin, D.‐E. Suh, S. Lee, D. Choi, Front Microbiol. 2024, 15, 1509603, https://doi.org/10.3389/fmicb.2024.1509603.
M. Srikanth, T. S. R. S. Sandeep, K. Sucharitha, S. Godi, Bioresour. Bioprocess. 2022, 9, 42, https://doi.org/10.1186/s40643‐022‐00532‐4.
M. C. Krueger, B. Seiwert, A. Prager, S. Zhang, B. Abel, H. Harms, D. Schlosser, Chemosphere 2017, 173, 520–528, https://doi.org/10.1016/j.chemosphere.2017.01.089.
D. H. Y. Yanto, N. P. R. A. Krishanti, F. C. Ardiati, S. H. Anita, I. K. Nugraha, F. P. Sari, R. P. B. Laksana, S. Sapardi, T. Watanabe, IOP Conf. Ser.: Earth Environ. Sci. 2019, 308, 012001, https://doi.org/10.1088/1755‐1315/308/1/012001.
S. Karimah, D. Yanto, G. Rahayu, O. D. Nurhayat, Bioremediation J. 2024, 1–14, https://doi.org/10.1080/10889868.2024.2355187.
F. Wu, Z. Guo, K. Cui, D. Dong, X. Yang, J. Li, Z. Wu, L. Li, Y. Dai, T. Pan, J. Hazard. Mater. 2023, 448, 130878, https://doi.org/10.1016/j.jhazmat.2023.130878.
K. Nakamiya, G. Sakasita, T. Ooi, S. Kinoshita, J. Biosci. Bioeng. 1997, 84, 480–482.
M. C. Krueger, U. Hofmann, M. Moeder, D. Schlosser, PLoS One 2015, 10, e0131773.
H.‐W. Kim, J. H. Jo, Y.‐B. Kim, T.‐K. Le, C.‐W. Cho, C.‐H. Yun, W. S. Chi, S.‐J. Yeom, J. Hazard. Mater. 2021, 416, 126239, https://doi.org/10.1016/j.jhazmat.2021.126239.
Y. Du, C. Yao, M. Dou, J. Wu, L. Su, W. Xia, J. Hazard. Mater. 2022, 436, 129265, https://doi.org/10.1016/j.jhazmat.2022.129265.
A. Zerva, R. Siaperas, G. Taxeidis, M. Kyriakidi, S. Vouyiouka, G. I. Zervakis, E. Topakas, Chemosphere 2023, 312, 137338, https://doi.org/10.1016/j.chemosphere.2022.137338.
Q. Qiu, H. Li, X. Sun, K. Tian, J. Gu, F. Zhang, D. Zhou, X. Zhang, H. Huo, J. Hazard. Mater. 2024, 476, 135031, https://doi.org/10.1016/j.jhazmat.2024.135031.
D. Navarro, D. Chaduli, S. Taussac, L. Lesage‐Meessen, S. Grisel, M. Haon, P. Callac, R. Courtecuisse, C. Decock, J. Dupont, F. Richard‐Forget, J. Fournier, J. Guinberteau, C. Lechat, P.‐A. Moreau, L. Pinson‐Gadais, B. Rivoire, L. Sage, S. Welti, M.‐N. Rosso, J.‐G. Berrin, B. Bissaro, A. Favel, Commun. Biol. 2021, 4, 1–10, https://doi.org/10.1038/s42003‐021‐02401‐w.
M. Aguirre, N. Ballard, E. Gonzalez, S. Hamzehlou, H. Sardon, M. Calderon, M. Paulis, R. Tomovska, D. Dupin, R. H. Bean, T. E. Long, J. R. Leiza, J. M. Asua, Macromolecules 2023, 56, 2579–2607.
M. Lansalot, C. Farcet, B. Charleux, J.‐P. Vairon, R. Pirri, Macromolecules 1999, 32, 7354–7360, https://doi.org/10.1021/ma990447w.
S. Kawai, M. Nakagawa, H. Ohashi, FEBS Lett. 1999, 446, 355–358, https://doi.org/10.1016/S0014‐5793(99)00247‐1.
C. Crestini, L. Jurasek, D. S. Argyropoulos, Chem.–Eur. J. 2003, 9, 5371–5378, https://doi.org/10.1002/chem.200304818.
D. Jendrossek, J. Birke, Appl. Microbiol. Biotechnol. 2019, 103, 125–142, https://doi.org/10.1007/s00253‐018‐9453‐z.
K. Berthelot, S. Lecomte, Y. Estevez, F. Peruch, Biochimie 2014, 106, 1–9, https://doi.org/10.1016/j.biochi.2014.07.002.
V. K. B. Adjedje, E. Schell, Y. L. Wolf, A. Laub, M. J. Weissenborn, W. H. Binder, Green Chem. 2021, 23, 9433–9438, https://doi.org/10.1039/D1GC03515K.
U. K. Laemmli, Nature 1970, 227, 680–685, https://doi.org/10.1038/227680a0.
D. E. Otzen, J. N. Pedersen, H. Ø. Rasmussen, J. S. Pedersen, Adv. Colloid Interface Sci. 2022, 308, 102754, https://doi.org/10.1016/j.cis.2022.102754.
K. P. Sullivan, A. Z. Werner, K. J. Ramirez, L. D. Ellis, J. R. Bussard, B. A. Black, D. G. Brandner, F. Bratti, B. L. Buss, X. Dong, S. J. Haugen, M. A. Ingraham, M. O. Konev, W. E. Michener, J. Miscall, I. Pardo, S. P. Woodworth, A. M. Guss, Y. Román‐Leshkov, S. S. Stahl, G. T. Beckham, Science 2022, 378, 207–211, https://doi.org/10.1126/science.abo4626.
S. V. Canevarolo, Polym. Degrad. Stab. 2000, 70, 71–76, https://doi.org/10.1016/S0141‐3910(00)00090‐2.
Z. Pan, L. Brassart, Acta Biomater. 2023, 167, 361–373, https://doi.org/10.1016/j.actbio.2023.06.021.
A. Munzone, M. Pujol, M. Badjoudj, M. Haon, S. Grisel, A. Magueresse, S. Durand, J. Beaugrand, J.‐G. Berrin, B. Bissaro, Chem. Bio. Eng. 2024, 1, 863–875, https://doi.org/10.1021/cbe.4c00125.
A. I. Cañas, S. Camarero, Biotechnol. Adv. 2010, 28, 694–705.
O. V. Morozova, G. P. Shumakovich, S. V. Shleev, Y. I. Yaropolov, Appl. Biochem. Microbiol. 2007, 43, 523–535.
L. P. Christopher, B. Yao, Y. Ji, Front. Energy Res. 2014, 2, 1–13, https://doi.org/10.3389/fenrg.2014.00012.
F. Xu, H. W. Deussen, B. Lopez, L. Lam, K. Li, Eur. J. Biochem. 2001, 268, 4169–4176, https://doi.org/10.1046/j.1432‐1327.2001.02328.x.
F. Xu, J. J. Kulys, K. Duke, K. Li, K. Krikstopaitis, H.‐J. W. Deussen, E. Abbate, V. Galinyte, P. Schneider, Appl. Environ. Microbiol. 2000, 66, 2052–2056, https://doi.org/10.1128/AEM.66.5.2052‐2056.2000.
K. Li, F. Xu, K.‐E. L. Eriksson, Appl. Environ. Microbiol. 1999, 65, 2654–2660, https://doi.org/10.1128/AEM.65.6.2654‐2660.1999.
F. Xu, R. M. Berka, J. A. Wahleithner, B. A. Nelson, J. R. Shuster, S. H. Brown, A. E. Palmer, E. I. Solomon, Biochem. J. 1998, 334, 63–70, https://doi.org/10.1042/bj3340063.
M. Loos, C. Gerber, F. Corona, J. Hollender, H. Singer, Anal. Chem. 2015, 87, 5738–5744, https://doi.org/10.1021/acs.analchem.5b00941.