Hepatitis B virus is a stealth virus that minimizes proteomic and secretomic changes in primary human hepatocytes
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
41201845
PubMed Central
PMC12594339
DOI
10.1099/jgv.0.002170
Knihovny.cz E-zdroje
- Klíčová slova
- bulevirtide, hepatitis B virus, host factor, proteomics, reticulocalbin-2, secretome, virus–host interaction,
- MeSH
- hepatitida B * virologie metabolismus MeSH
- hepatocyty * virologie metabolismus MeSH
- interakce hostitele a patogenu * MeSH
- kultivované buňky MeSH
- lidé MeSH
- proteom * analýza MeSH
- proteomika MeSH
- replikace viru MeSH
- virus hepatitidy B * fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteom * MeSH
Hepatitis B virus (HBV) is a hepatotropic DNA virus that infects over 250 million people worldwide and causes serious liver diseases. HBV infection can modulate host cellular processes, potentially inducing proteomic changes in hepatocytes. In this study, we investigated how acute HBV infection alters the proteome and secretome of primary human hepatocytes, a physiologically relevant in vitro model that retains essential liver-specific functions. Protein-level changes in cell lysates and culture supernatants were quantified 8 days post-infection using data-independent acquisition MS. We used HBV infection in the presence of the entry inhibitor bulevirtide as a control to separate the effects of productive infection from those caused by inoculum-associated components. Despite robust infection, active HBV replication induced only subtle changes in host protein levels. Orthogonal validation of MS-identified candidates confirmed reticulocalbin-2 as a novel host factor downregulated during productive HBV infection. The functional role of candidate proteins identified by MS was assessed in vitro by siRNA-mediated knockdown and measurement of viral replication markers. Knockdown had no impact on viral RNA or antigen levels, suggesting that the observed proteomic changes may reflect stress responses or broader modulation of the hepatic microenvironment. Our findings support the concept of HBV as a stealth virus and underscore the importance of carefully controlled experimental systems for studying host responses to infection in vitro.
Zobrazit více v PubMed
Štaflová K, Clarova K, Doležal M, Hubálek M, Křenková A, et al. 2025. Hepatitis B virus is a stealth virus that minimizes proteomic and secretomic changes in primary human hepatocytes. Figshare . PubMed DOI PMC
Schlaak JF. Current therapy of chronic viral hepatitis B, C and D. J Pers Med. 2023;13:964. doi: 10.3390/jpm13060964. PubMed DOI PMC
Li D, Hamadalnil Y, Tu T. Hepatitis B Viral protein HBx: Roles in viral replication and hepatocarcinogenesis. Viruses. 2024;16:1361. doi: 10.3390/v16091361. PubMed DOI PMC
Jose-Abrego A, Roman S, Laguna-Meraz S, Panduro A. Host and HBV interactions and their potential impact on clinical outcomes. Pathogens. 2023;12:1146. doi: 10.3390/pathogens12091146. PubMed DOI PMC
Katrinli S, Ozdil K, Sahin A, Ozturk O, Kir G, et al. Proteomic profiling of HBV infected liver biopsies with different fibrotic stages. Proteome Sci. 2016;15:7. doi: 10.1186/s12953-017-0114-4. PubMed DOI PMC
Gao Q, Zhu H, Dong L, Shi W, Chen R, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell. 2019;179:561–577. doi: 10.1016/j.cell.2019.08.052. PubMed DOI
Ye B, Shen Y, Chen H, Lin S, Mao W, et al. Differential proteomic analysis of plasma-derived exosomes as diagnostic biomarkers for chronic HBV-related liver disease. Sci Rep. 2022;12:14428. doi: 10.1038/s41598-022-13272-4. PubMed DOI PMC
Xun Z, Yao X, Zhu C, Ye Y, Wu S, et al. Proteomic characterization of the natural history of chronic HBV infection revealed by tandem mass tag-based quantitative proteomics approach. Mater Today Bio. 2022;15:100302. doi: 10.1016/j.mtbio.2022.100302. PubMed DOI PMC
Lin P, Wen D-Y, Pang J-S, Liao W, Chen Y-J, et al. Proteomics profiling of nontumor liver tissues identifies prognostic biomarkers in hepatitis b-related hepatocellular carcinoma. J Med Virol. 2023;95:e27732. doi: 10.1002/jmv.27732. PubMed DOI
Jiang X, Tian J, Song L, Meng J, Yang Z, et al. Multi-omic molecular characterization and diagnostic biomarkers for occult hepatitis B infection and HBsAg-positive hepatitis B infection. Front Endocrinol. 2024;15:1409079. doi: 10.3389/fendo.2024.1409079. PubMed DOI PMC
Feng H, Li X, Chan V, Chen WN. Proteomics based identification of cell migration related proteins in HBV expressing HepG2 cells. PLoS One. 2014;9:e95621. doi: 10.1371/journal.pone.0095621. PubMed DOI PMC
Zhao X, Wu Y, Duan J, Ma Y, Shen Z, et al. Quantitative proteomic analysis of exosome protein content changes induced by hepatitis B virus in Huh-7 cells using SILAC labeling and LC-MS/MS. J Proteome Res. 2014;13:5391–5402. doi: 10.1021/pr5008703. PubMed DOI
Padarath K, Deroubaix A, Naicker P, Stoychev S, Kramvis A. Comparative proteomic analysis of Huh7 cells transfected with sub-saharan african hepatitis B virus (Sub)genotypes reveals potential oncogenic factors. Viruses. 2024;16:1052. doi: 10.3390/v16071052. PubMed DOI PMC
She S, Yang M, Hu H, Hu P, Yang Y, et al. Proteomics based identification of autotaxin as an anti-hepatitis B virus factor and a promoter of hepatoma cell invasion and migration. Cell Physiol Biochem. 2018;45:744–760. doi: 10.1159/000487166. PubMed DOI
Yuan S, Tanzeel Y, Tian X, Zheng D, Wajeeha N, et al. Global analysis of HBV-mediated host proteome and ubiquitylome change in HepG2.2.15 human hepatoblastoma cell line. Cell Biosci. 2021;11:75. doi: 10.1186/s13578-021-00588-3. PubMed DOI PMC
Yuan S, Liao G, Zhang M, Zhu Y, Xiao W, et al. Multiomics interrogation into HBV (Hepatitis B virus)-host interaction reveals novel coding potential in human genome, and identifies canonical and non-canonical proteins as host restriction factors against HBV. Cell Discov. 2021;7:105. doi: 10.1038/s41421-021-00337-3. PubMed DOI PMC
Rahman N, Sun J, Li Z, Pattnaik A, Mohallem R, et al. The cytoplasmic LSm1-7 and nuclear LSm2-8 complexes exert opposite effects on Hepatitis B virus biosynthesis and interferon responses. Front Immunol. 2022;13:970130. doi: 10.3389/fimmu.2022.970130. PubMed DOI PMC
Yan S, Fu P, Zhu Y, Li H, Shan R, et al. Whole transcriptome and proteome analyses identify ncRNAs and mRNAs to predict competing endogenous RNA networks in hepatitis B virus-induced hepatocellular carcinoma. Microbial Pathogenesis. 2025;199:107248. doi: 10.1016/j.micpath.2024.107248. PubMed DOI
Olsavsky KM, Page JL, Johnson MC, Zarbl H, Strom SC, et al. Gene expression profiling and differentiation assessment in primary human hepatocyte cultures, established hepatoma cell lines, and human liver tissues. Toxicol Appl Pharmacol. 2007;222:42–56. doi: 10.1016/j.taap.2007.03.032. PubMed DOI PMC
Pastor F, Charles E, Belmudes L, Chabrolles H, Cescato M, et al. Deciphering the phospho-signature induced by hepatitis B virus in primary human hepatocytes. Front Microbiol. 2024;15:1415449. doi: 10.3389/fmicb.2024.1415449. PubMed DOI PMC
Guo H, Urban S, Wang W. In vitro cell culture models to study hepatitis B and D virus infection. Front Microbiol. 2023;14:1169770. doi: 10.3389/fmicb.2023.1169770. PubMed DOI PMC
Carpentier A. Cell culture models for hepatitis b and d viruses infection: old challenges, new developments and future strategies. Viruses. 2024;16:716. doi: 10.3390/v16050716. PubMed DOI PMC
Zai W, Hu K, Ye J, Ding J, Huang C, et al. Long-term hepatitis b virus infection induces cytopathic effects in primary human hepatocytes, and can be partially reversed by antiviral therapy. Microbiol Spectr. 2022;10:e0132821. doi: 10.1128/spectrum.01328-21. PubMed DOI PMC
Štaflová K, Zábranský A, Pichová I. Evaluation of the role of unconventional prefoldin RPB5 interactor (URI1) in hepatitis b virus infection. Virol J. 2025;22:7. doi: 10.1186/s12985-024-02617-2. PubMed DOI PMC
Zábranská H, Zábranský A, Lubyová B, Hodek J, Křenková A, et al. Biogenesis of hepatitis b virus e antigen is driven by translocon-associated protein complex and regulated by conserved cysteine residues within its signal peptide sequence. FEBS J. 2022;289:2895–2914. doi: 10.1111/febs.16304. PubMed DOI PMC
Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods. 2020;17:41–44. doi: 10.1038/s41592-019-0638-x. PubMed DOI PMC
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC
van Buuren S, Groothuis-Oudshoorn K. Mice: multivariate imputation by chained equations in R. J Stat Softw. 2011;45:1–67. doi: 10.18637/jss.v045.i03. DOI
Zhu Y, Orre LM, Zhou Tran Y, Mermelekas G, Johansson HJ, et al. DEqMS: a method for accurate variance estimation in differential protein expression analysis. Mol Cell Proteomics MCP. 2020;19:1047–1057. doi: 10.1074/mcp.TIR119.001646. PubMed DOI PMC
Wu T, Hu E, Xu S, Chen M, Guo P, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov Camb Mass. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Ni Y, Urban S. Hepatitis b virus infection of heparg cells, heparg-hntcp cells, and primary human hepatocytes. Methods Mol Biol Clifton NJ. 2017;1540:15–25. doi: 10.1007/978-1-4939-6700-1_2. PubMed DOI
Decorsière A, Mueller H, van Breugel PC, Abdul F, Gerossier L, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016;531:386–389. doi: 10.1038/nature17170. PubMed DOI
Murphy CM, Xu Y, Li F, Nio K, Reszka-Blanco N, et al. Hepatitis B Virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep. 2016;16:2846–2854. doi: 10.1016/j.celrep.2016.08.026. PubMed DOI PMC
Weis K, Griffiths G, Lamond AI. The endoplasmic reticulum calcium-binding protein of 55 kDa is a novel EF-hand protein retained in the endoplasmic reticulum by a carboxyl-terminal His-Asp-Glu-Leu motif. J Biol Chem. 1994;269:19142–19150. PubMed
Inoue M, Kamada H, Abe Y, Higashisaka K, Nagano K, et al. Aminopeptidase P3, a new member of the TNF-TNFR2 signaling complex, induces phosphorylation of JNK1 and JNK2. J Cell Sci. 2015;128:656–669. doi: 10.1242/jcs.149385. PubMed DOI
Yoon K-A, Nakamura Y, Arakawa H. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J Hum Genet. 2004;49:134–140. doi: 10.1007/s10038-003-0122-3. PubMed DOI
Jia X, Zhai T. Integrated analysis of multiple microarray studies to identify novel gene signatures in non-alcoholic fatty liver disease. Front Endocrinol. 2019;10:599. doi: 10.3389/fendo.2019.00599. PubMed DOI PMC
Yao Q, Peng B, Li C, Li X, Chen M, et al. SLF2 interacts with the SMC5/6 complex to direct hepatitis B virus episomal DNA to promyelocytic leukemia bodies for transcriptional repression. J Virol. 2023;97:e0032823. doi: 10.1128/jvi.00328-23. PubMed DOI PMC
Qiao L, Luo GG. Human apolipoprotein E promotes hepatitis B virus infection and production. PLoS Pathog. 2019;15:e1007874. doi: 10.1371/journal.ppat.1007874. PubMed DOI PMC
Livezey KW, Negorev D, Simon D. Hepatitis B virus-transfected Hep G2 cells demonstrate genetic alterations and de novo viral integration in cells replicating HBV. Mutat Res. 2000;452:163–178. doi: 10.1016/s0027-5107(00)00072-5. PubMed DOI
Wang T, Zhao R, Wu Y, Kong D, Zhang L, et al. Hepatitis B virus induces G1 phase arrest by regulating cell cycle genes in HepG2.2.15 cells. Virol J. 2011;8:231. doi: 10.1186/1743-422X-8-231. PubMed DOI PMC
Zhao R, Wang T-Z, Kong D, Zhang L, Meng H-X. Hepatoma cell line HepG2.2.15 demonstrates distinct biological features compared with parental HepG2. World J Gastroenterol. 2011;17:1152. doi: 10.3748/wjg.v17.i9.1152. PubMed DOI PMC
Narayan R, Gangadharan B, Hantz O, Antrobus R, García A, et al. Proteomic analysis of HepaRG cells: a novel cell line that supports hepatitis B virus infection. J Proteome Res. 2009;8:118–122. doi: 10.1021/pr800562j. PubMed DOI
Winer BY, Gaska JM, Lipkowitz G, Bram Y, Parekh A, et al. Analysis of host responses to hepatitis B and delta viral infections in a micro-scalable hepatic co-culture system. Hepatology. 2020;71:14–30. doi: 10.1002/hep.30815. PubMed DOI PMC
Chida T, Ishida Y, Morioka S, Sugahara G, Han C, et al. Persistent hepatic IFN system activation in HBV-HDV infection determines viral replication dynamics and therapeutic response. JCI Insight. 2023;8:e162404. doi: 10.1172/jci.insight.162404. PubMed DOI PMC
Jia X, Chen J, Megger DA, Zhang X, Kozlowski M, et al. Label-free proteomic analysis of exosomes derived from inducible hepatitis B virus-replicating HepAD38 cell line. Mol Cell Proteomics MCP. 2017;16:S144–S160. doi: 10.1074/mcp.M116.063503. PubMed DOI PMC
Wettengel JM, Linden B, Esser K, Laue M, Burwitz BJ, et al. Rapid and robust continuous purification of high-titer hepatitis b virus for in vitro and in vivo applications. Viruses. 2021;13:1503. doi: 10.3390/v13081503. PubMed DOI PMC
Schwarzenbach H, Gahan PB. MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer. Noncoding RNA. 2019;5:28. doi: 10.3390/ncrna5010028. PubMed DOI PMC
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, et al. Exosome-mediated transfer of mrnas and micrornas is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–659. doi: 10.1038/ncb1596. PubMed DOI
Gripon P, Cannie I, Urban S. Efficient inhibition of hepatitis b virus infection by acylated peptides derived from the large viral surface protein. J Virol. 2005;79:1613–1622. doi: 10.1128/JVI.79.3.1613-1622.2005. PubMed DOI PMC
Mathieson T, Franken H, Kosinski J, Kurzawa N, Zinn N, et al. Systematic analysis of protein turnover in primary cells. Nat Commun. 2018;9:689. doi: 10.1038/s41467-018-03106-1. PubMed DOI PMC
Blank A, Markert C, Hohmann N, Carls A, Mikus G, et al. First-in-human application of the novel hepatitis B and hepatitis D virus entry inhibitor myrcludex B. J Hepatol. 2016;65:483–489. doi: 10.1016/j.jhep.2016.04.013. PubMed DOI
Kang C, Syed YY. Bulevirtide: first approval. Drugs. 2020;80:1601–1605. doi: 10.1007/s40265-020-01400-1. PubMed DOI
Oehler N, Volz T, Bhadra OD, Kah J, Allweiss L, et al. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism. Hepatology. 2014;60:1483–1493. doi: 10.1002/hep.27159. PubMed DOI
Stoll F, Seidel-Glätzer A, Burghaus I, Göring O, Sauter M, et al. Metabolic effect of blocking sodium-taurocholate co-transporting polypeptide in hypercholesterolemic humans with a twelve-week course of bulevirtide-an exploratory phase I clinical trial. Int J Mol Sci. 2022;23:15924. doi: 10.3390/ijms232415924. PubMed DOI PMC
Porteiro B, Roscam Abbing RLP, In het Panhuis W, de Waart DR, Duijst S, et al. Inhibition of hepatic bile salt uptake by Bulevirtide reduces atherosclerosis in Oatp1a1 Ldlr mice. J Lipid Res. 2024;65:100594. doi: 10.1016/j.jlr.2024.100594. PubMed DOI PMC
Cheng X, Xia Y, Serti E, Block PD, Chung M, et al. Hepatitis b virus evades innate immunity of hepatocytes but activates cytokine production by macrophages. Hepatology. 2017;66:1779–1793. doi: 10.1002/hep.29348. PubMed DOI PMC
Li A, Yi Z, Ma C, Sun B, Zhao L, et al. Innate immune recognition in hepatitis b virus infection. Virulence. 2025;16:2492371. doi: 10.1080/21505594.2025.2492371. PubMed DOI PMC
Yao H, Zhang S, Xie H, Fan Y, Miao M, et al. RCN2 promotes Nasopharyngeal carcinoma progression by curbing Calcium flow and Mitochondrial apoptosis. Cell Oncol. 2023;46:1031–1048. doi: 10.1007/s13402-023-00796-8. PubMed DOI PMC
Sherman L, Itzhaki H, Jackman A, Chen JJ, Koval D, et al. Inhibition of serum- and calcium-induced terminal differentiation of human keratinocytes by HPV 16 E6: study of the association with p53 degradation, inhibition of p53 transactivation, and binding to E6BP. Virology. 2002;292:309–320. doi: 10.1006/viro.2001.1263. PubMed DOI
Mei C, Jiang X, Gu Y, Wu X, Ma W, et al. YY1-mediated reticulocalbin-2 upregulation promotes the hepatocellular carcinoma progression via activating MYC signaling. Am J Cancer Res. 2021;11:2238–2251. PubMed PMC
Ding D, Huang H, Jiang W, Yu W, Zhu H, et al. Reticulocalbin-2 enhances hepatocellular carcinoma proliferation via modulating the EGFR-ERK pathway. Oncogene. 2017;36:6691–6700. doi: 10.1038/onc.2017.230. PubMed DOI
Norton PA, Gong Q, Mehta AS, Lu X, Block TM. Hepatitis B virus-mediated changes of apolipoprotein mRNA abundance in cultured hepatoma cells. J Virol. 2003;77:5503–5506. doi: 10.1128/JVI.77.9.5503-5506.2003. PubMed DOI PMC
Wang F-B, Zhu C, Liu X, Gao G. HBV inhibits apoB production via the suppression of MTP expression. Lipids Health Dis. 2011;10:207. doi: 10.1186/1476-511X-10-207. PubMed DOI PMC
Wu X, Niu J, Shi Y. Exosomes target HBV-host interactions to remodel the hepatic immune microenvironment. J Nanobiotechnol. 2024;22:315. doi: 10.1186/s12951-024-02544-y. PubMed DOI PMC
Knecht S, Eberl HC, Kreisz N, Ugwu UJ, Starikova T, et al. An Introduction to analytical challenges, approaches, and applications in mass spectrometry–based secretomics. Mol Cell Proteomics MCP. 2023;22:100636. doi: 10.1016/j.mcpro.2023.100636. PubMed DOI PMC
Abhange K, Kitata RB, Zhang J, Wang Y-T, Gaffrey MJ, et al. In-Depth proteome profiling of small extracellular vesicles isolated from cancer cell lines and patient serum. J Proteome Res. 2024;23:386–396. doi: 10.1021/acs.jproteome.3c00614. PubMed DOI PMC
Galardi A, Colletti M, Lavarello C, Di Paolo V, Mascio P, et al. Proteomic profiling of retinoblastoma-derived exosomes reveals potential biomarkers of vitreous seeding. Cancers. 2020;12:1555. doi: 10.3390/cancers12061555. PubMed DOI PMC
Park JE, Tan HS, Datta A, Lai RC, Zhang H, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics MCP. 2010;9:1085–1099. doi: 10.1074/mcp.M900381-MCP200. PubMed DOI PMC
Li C, Jiang L, Qi Y, Zhang D, Liu X, et al. Integration of metabolomics and proteomics reveals the underlying hepatotoxic mechanism of perfluorooctane sulfonate (PFOS) and 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA) in primary human hepatocytes. Ecotoxicol Environ Saf. 2023;249:114361. doi: 10.1016/j.ecoenv.2022.114361. PubMed DOI
Heslop JA, Rowe C, Walsh J, Sison-Young R, Jenkins R, et al. Mechanistic evaluation of primary human hepatocyte culture using global proteomic analysis reveals a selective dedifferentiation profile. Arch Toxicol. 2017;91:439–452. doi: 10.1007/s00204-016-1694-y. PubMed DOI PMC
Ölander M, Wiśniewski JR, Artursson P. Cell-type-resolved proteomic analysis of the human liver. Liver Int. 2020;40:1770–1780. doi: 10.1111/liv.14452. PubMed DOI
Martinez-Val A, Guzmán UH, Olsen JV. Obtaining complete human proteomes. Annu Rev Genomics Hum Genet. 2022;23:99–121. doi: 10.1146/annurev-genom-112921-024948. PubMed DOI
Kongpracha P, Wiriyasermkul P, Isozumi N, Moriyama S, Kanai Y, et al. Simple but efficacious enrichment of integral membrane proteins and their interactions for in-depth membrane proteomics. Mol Cell Proteomics MCP. 2022;21:100206. doi: 10.1016/j.mcpro.2022.100206. PubMed DOI PMC