Hepatitis B virus is a stealth virus that minimizes proteomic and secretomic changes in primary human hepatocytes

. 2025 Nov ; 106 (11) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41201845

Hepatitis B virus (HBV) is a hepatotropic DNA virus that infects over 250 million people worldwide and causes serious liver diseases. HBV infection can modulate host cellular processes, potentially inducing proteomic changes in hepatocytes. In this study, we investigated how acute HBV infection alters the proteome and secretome of primary human hepatocytes, a physiologically relevant in vitro model that retains essential liver-specific functions. Protein-level changes in cell lysates and culture supernatants were quantified 8 days post-infection using data-independent acquisition MS. We used HBV infection in the presence of the entry inhibitor bulevirtide as a control to separate the effects of productive infection from those caused by inoculum-associated components. Despite robust infection, active HBV replication induced only subtle changes in host protein levels. Orthogonal validation of MS-identified candidates confirmed reticulocalbin-2 as a novel host factor downregulated during productive HBV infection. The functional role of candidate proteins identified by MS was assessed in vitro by siRNA-mediated knockdown and measurement of viral replication markers. Knockdown had no impact on viral RNA or antigen levels, suggesting that the observed proteomic changes may reflect stress responses or broader modulation of the hepatic microenvironment. Our findings support the concept of HBV as a stealth virus and underscore the importance of carefully controlled experimental systems for studying host responses to infection in vitro.

Zobrazit více v PubMed

Štaflová K, Clarova K, Doležal M, Hubálek M, Křenková A, et al. 2025. Hepatitis B virus is a stealth virus that minimizes proteomic and secretomic changes in primary human hepatocytes. Figshare . PubMed DOI PMC

Schlaak JF. Current therapy of chronic viral hepatitis B, C and D. J Pers Med. 2023;13:964. doi: 10.3390/jpm13060964. PubMed DOI PMC

Li D, Hamadalnil Y, Tu T. Hepatitis B Viral protein HBx: Roles in viral replication and hepatocarcinogenesis. Viruses. 2024;16:1361. doi: 10.3390/v16091361. PubMed DOI PMC

Jose-Abrego A, Roman S, Laguna-Meraz S, Panduro A. Host and HBV interactions and their potential impact on clinical outcomes. Pathogens. 2023;12:1146. doi: 10.3390/pathogens12091146. PubMed DOI PMC

Katrinli S, Ozdil K, Sahin A, Ozturk O, Kir G, et al. Proteomic profiling of HBV infected liver biopsies with different fibrotic stages. Proteome Sci. 2016;15:7. doi: 10.1186/s12953-017-0114-4. PubMed DOI PMC

Gao Q, Zhu H, Dong L, Shi W, Chen R, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell. 2019;179:561–577. doi: 10.1016/j.cell.2019.08.052. PubMed DOI

Ye B, Shen Y, Chen H, Lin S, Mao W, et al. Differential proteomic analysis of plasma-derived exosomes as diagnostic biomarkers for chronic HBV-related liver disease. Sci Rep. 2022;12:14428. doi: 10.1038/s41598-022-13272-4. PubMed DOI PMC

Xun Z, Yao X, Zhu C, Ye Y, Wu S, et al. Proteomic characterization of the natural history of chronic HBV infection revealed by tandem mass tag-based quantitative proteomics approach. Mater Today Bio. 2022;15:100302. doi: 10.1016/j.mtbio.2022.100302. PubMed DOI PMC

Lin P, Wen D-Y, Pang J-S, Liao W, Chen Y-J, et al. Proteomics profiling of nontumor liver tissues identifies prognostic biomarkers in hepatitis b-related hepatocellular carcinoma. J Med Virol. 2023;95:e27732. doi: 10.1002/jmv.27732. PubMed DOI

Jiang X, Tian J, Song L, Meng J, Yang Z, et al. Multi-omic molecular characterization and diagnostic biomarkers for occult hepatitis B infection and HBsAg-positive hepatitis B infection. Front Endocrinol. 2024;15:1409079. doi: 10.3389/fendo.2024.1409079. PubMed DOI PMC

Feng H, Li X, Chan V, Chen WN. Proteomics based identification of cell migration related proteins in HBV expressing HepG2 cells. PLoS One. 2014;9:e95621. doi: 10.1371/journal.pone.0095621. PubMed DOI PMC

Zhao X, Wu Y, Duan J, Ma Y, Shen Z, et al. Quantitative proteomic analysis of exosome protein content changes induced by hepatitis B virus in Huh-7 cells using SILAC labeling and LC-MS/MS. J Proteome Res. 2014;13:5391–5402. doi: 10.1021/pr5008703. PubMed DOI

Padarath K, Deroubaix A, Naicker P, Stoychev S, Kramvis A. Comparative proteomic analysis of Huh7 cells transfected with sub-saharan african hepatitis B virus (Sub)genotypes reveals potential oncogenic factors. Viruses. 2024;16:1052. doi: 10.3390/v16071052. PubMed DOI PMC

She S, Yang M, Hu H, Hu P, Yang Y, et al. Proteomics based identification of autotaxin as an anti-hepatitis B virus factor and a promoter of hepatoma cell invasion and migration. Cell Physiol Biochem. 2018;45:744–760. doi: 10.1159/000487166. PubMed DOI

Yuan S, Tanzeel Y, Tian X, Zheng D, Wajeeha N, et al. Global analysis of HBV-mediated host proteome and ubiquitylome change in HepG2.2.15 human hepatoblastoma cell line. Cell Biosci. 2021;11:75. doi: 10.1186/s13578-021-00588-3. PubMed DOI PMC

Yuan S, Liao G, Zhang M, Zhu Y, Xiao W, et al. Multiomics interrogation into HBV (Hepatitis B virus)-host interaction reveals novel coding potential in human genome, and identifies canonical and non-canonical proteins as host restriction factors against HBV. Cell Discov. 2021;7:105. doi: 10.1038/s41421-021-00337-3. PubMed DOI PMC

Rahman N, Sun J, Li Z, Pattnaik A, Mohallem R, et al. The cytoplasmic LSm1-7 and nuclear LSm2-8 complexes exert opposite effects on Hepatitis B virus biosynthesis and interferon responses. Front Immunol. 2022;13:970130. doi: 10.3389/fimmu.2022.970130. PubMed DOI PMC

Yan S, Fu P, Zhu Y, Li H, Shan R, et al. Whole transcriptome and proteome analyses identify ncRNAs and mRNAs to predict competing endogenous RNA networks in hepatitis B virus-induced hepatocellular carcinoma. Microbial Pathogenesis. 2025;199:107248. doi: 10.1016/j.micpath.2024.107248. PubMed DOI

Olsavsky KM, Page JL, Johnson MC, Zarbl H, Strom SC, et al. Gene expression profiling and differentiation assessment in primary human hepatocyte cultures, established hepatoma cell lines, and human liver tissues. Toxicol Appl Pharmacol. 2007;222:42–56. doi: 10.1016/j.taap.2007.03.032. PubMed DOI PMC

Pastor F, Charles E, Belmudes L, Chabrolles H, Cescato M, et al. Deciphering the phospho-signature induced by hepatitis B virus in primary human hepatocytes. Front Microbiol. 2024;15:1415449. doi: 10.3389/fmicb.2024.1415449. PubMed DOI PMC

Guo H, Urban S, Wang W. In vitro cell culture models to study hepatitis B and D virus infection. Front Microbiol. 2023;14:1169770. doi: 10.3389/fmicb.2023.1169770. PubMed DOI PMC

Carpentier A. Cell culture models for hepatitis b and d viruses infection: old challenges, new developments and future strategies. Viruses. 2024;16:716. doi: 10.3390/v16050716. PubMed DOI PMC

Zai W, Hu K, Ye J, Ding J, Huang C, et al. Long-term hepatitis b virus infection induces cytopathic effects in primary human hepatocytes, and can be partially reversed by antiviral therapy. Microbiol Spectr. 2022;10:e0132821. doi: 10.1128/spectrum.01328-21. PubMed DOI PMC

Štaflová K, Zábranský A, Pichová I. Evaluation of the role of unconventional prefoldin RPB5 interactor (URI1) in hepatitis b virus infection. Virol J. 2025;22:7. doi: 10.1186/s12985-024-02617-2. PubMed DOI PMC

Zábranská H, Zábranský A, Lubyová B, Hodek J, Křenková A, et al. Biogenesis of hepatitis b virus e antigen is driven by translocon-associated protein complex and regulated by conserved cysteine residues within its signal peptide sequence. FEBS J. 2022;289:2895–2914. doi: 10.1111/febs.16304. PubMed DOI PMC

Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods. 2020;17:41–44. doi: 10.1038/s41592-019-0638-x. PubMed DOI PMC

Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543–D552. doi: 10.1093/nar/gkab1038. PubMed DOI PMC

van Buuren S, Groothuis-Oudshoorn K. Mice: multivariate imputation by chained equations in R. J Stat Softw. 2011;45:1–67. doi: 10.18637/jss.v045.i03. DOI

Zhu Y, Orre LM, Zhou Tran Y, Mermelekas G, Johansson HJ, et al. DEqMS: a method for accurate variance estimation in differential protein expression analysis. Mol Cell Proteomics MCP. 2020;19:1047–1057. doi: 10.1074/mcp.TIR119.001646. PubMed DOI PMC

Wu T, Hu E, Xu S, Chen M, Guo P, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov Camb Mass. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC

Ni Y, Urban S. Hepatitis b virus infection of heparg cells, heparg-hntcp cells, and primary human hepatocytes. Methods Mol Biol Clifton NJ. 2017;1540:15–25. doi: 10.1007/978-1-4939-6700-1_2. PubMed DOI

Decorsière A, Mueller H, van Breugel PC, Abdul F, Gerossier L, et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature. 2016;531:386–389. doi: 10.1038/nature17170. PubMed DOI

Murphy CM, Xu Y, Li F, Nio K, Reszka-Blanco N, et al. Hepatitis B Virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep. 2016;16:2846–2854. doi: 10.1016/j.celrep.2016.08.026. PubMed DOI PMC

Weis K, Griffiths G, Lamond AI. The endoplasmic reticulum calcium-binding protein of 55 kDa is a novel EF-hand protein retained in the endoplasmic reticulum by a carboxyl-terminal His-Asp-Glu-Leu motif. J Biol Chem. 1994;269:19142–19150. PubMed

Inoue M, Kamada H, Abe Y, Higashisaka K, Nagano K, et al. Aminopeptidase P3, a new member of the TNF-TNFR2 signaling complex, induces phosphorylation of JNK1 and JNK2. J Cell Sci. 2015;128:656–669. doi: 10.1242/jcs.149385. PubMed DOI

Yoon K-A, Nakamura Y, Arakawa H. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. J Hum Genet. 2004;49:134–140. doi: 10.1007/s10038-003-0122-3. PubMed DOI

Jia X, Zhai T. Integrated analysis of multiple microarray studies to identify novel gene signatures in non-alcoholic fatty liver disease. Front Endocrinol. 2019;10:599. doi: 10.3389/fendo.2019.00599. PubMed DOI PMC

Yao Q, Peng B, Li C, Li X, Chen M, et al. SLF2 interacts with the SMC5/6 complex to direct hepatitis B virus episomal DNA to promyelocytic leukemia bodies for transcriptional repression. J Virol. 2023;97:e0032823. doi: 10.1128/jvi.00328-23. PubMed DOI PMC

Qiao L, Luo GG. Human apolipoprotein E promotes hepatitis B virus infection and production. PLoS Pathog. 2019;15:e1007874. doi: 10.1371/journal.ppat.1007874. PubMed DOI PMC

Livezey KW, Negorev D, Simon D. Hepatitis B virus-transfected Hep G2 cells demonstrate genetic alterations and de novo viral integration in cells replicating HBV. Mutat Res. 2000;452:163–178. doi: 10.1016/s0027-5107(00)00072-5. PubMed DOI

Wang T, Zhao R, Wu Y, Kong D, Zhang L, et al. Hepatitis B virus induces G1 phase arrest by regulating cell cycle genes in HepG2.2.15 cells. Virol J. 2011;8:231. doi: 10.1186/1743-422X-8-231. PubMed DOI PMC

Zhao R, Wang T-Z, Kong D, Zhang L, Meng H-X. Hepatoma cell line HepG2.2.15 demonstrates distinct biological features compared with parental HepG2. World J Gastroenterol. 2011;17:1152. doi: 10.3748/wjg.v17.i9.1152. PubMed DOI PMC

Narayan R, Gangadharan B, Hantz O, Antrobus R, García A, et al. Proteomic analysis of HepaRG cells: a novel cell line that supports hepatitis B virus infection. J Proteome Res. 2009;8:118–122. doi: 10.1021/pr800562j. PubMed DOI

Winer BY, Gaska JM, Lipkowitz G, Bram Y, Parekh A, et al. Analysis of host responses to hepatitis B and delta viral infections in a micro-scalable hepatic co-culture system. Hepatology. 2020;71:14–30. doi: 10.1002/hep.30815. PubMed DOI PMC

Chida T, Ishida Y, Morioka S, Sugahara G, Han C, et al. Persistent hepatic IFN system activation in HBV-HDV infection determines viral replication dynamics and therapeutic response. JCI Insight. 2023;8:e162404. doi: 10.1172/jci.insight.162404. PubMed DOI PMC

Jia X, Chen J, Megger DA, Zhang X, Kozlowski M, et al. Label-free proteomic analysis of exosomes derived from inducible hepatitis B virus-replicating HepAD38 cell line. Mol Cell Proteomics MCP. 2017;16:S144–S160. doi: 10.1074/mcp.M116.063503. PubMed DOI PMC

Wettengel JM, Linden B, Esser K, Laue M, Burwitz BJ, et al. Rapid and robust continuous purification of high-titer hepatitis b virus for in vitro and in vivo applications. Viruses. 2021;13:1503. doi: 10.3390/v13081503. PubMed DOI PMC

Schwarzenbach H, Gahan PB. MicroRNA shuttle from cell-to-cell by exosomes and its impact in cancer. Noncoding RNA. 2019;5:28. doi: 10.3390/ncrna5010028. PubMed DOI PMC

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, et al. Exosome-mediated transfer of mrnas and micrornas is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–659. doi: 10.1038/ncb1596. PubMed DOI

Gripon P, Cannie I, Urban S. Efficient inhibition of hepatitis b virus infection by acylated peptides derived from the large viral surface protein. J Virol. 2005;79:1613–1622. doi: 10.1128/JVI.79.3.1613-1622.2005. PubMed DOI PMC

Mathieson T, Franken H, Kosinski J, Kurzawa N, Zinn N, et al. Systematic analysis of protein turnover in primary cells. Nat Commun. 2018;9:689. doi: 10.1038/s41467-018-03106-1. PubMed DOI PMC

Blank A, Markert C, Hohmann N, Carls A, Mikus G, et al. First-in-human application of the novel hepatitis B and hepatitis D virus entry inhibitor myrcludex B. J Hepatol. 2016;65:483–489. doi: 10.1016/j.jhep.2016.04.013. PubMed DOI

Kang C, Syed YY. Bulevirtide: first approval. Drugs. 2020;80:1601–1605. doi: 10.1007/s40265-020-01400-1. PubMed DOI

Oehler N, Volz T, Bhadra OD, Kah J, Allweiss L, et al. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism. Hepatology. 2014;60:1483–1493. doi: 10.1002/hep.27159. PubMed DOI

Stoll F, Seidel-Glätzer A, Burghaus I, Göring O, Sauter M, et al. Metabolic effect of blocking sodium-taurocholate co-transporting polypeptide in hypercholesterolemic humans with a twelve-week course of bulevirtide-an exploratory phase I clinical trial. Int J Mol Sci. 2022;23:15924. doi: 10.3390/ijms232415924. PubMed DOI PMC

Porteiro B, Roscam Abbing RLP, In het Panhuis W, de Waart DR, Duijst S, et al. Inhibition of hepatic bile salt uptake by Bulevirtide reduces atherosclerosis in Oatp1a1 Ldlr mice. J Lipid Res. 2024;65:100594. doi: 10.1016/j.jlr.2024.100594. PubMed DOI PMC

Cheng X, Xia Y, Serti E, Block PD, Chung M, et al. Hepatitis b virus evades innate immunity of hepatocytes but activates cytokine production by macrophages. Hepatology. 2017;66:1779–1793. doi: 10.1002/hep.29348. PubMed DOI PMC

Li A, Yi Z, Ma C, Sun B, Zhao L, et al. Innate immune recognition in hepatitis b virus infection. Virulence. 2025;16:2492371. doi: 10.1080/21505594.2025.2492371. PubMed DOI PMC

Yao H, Zhang S, Xie H, Fan Y, Miao M, et al. RCN2 promotes Nasopharyngeal carcinoma progression by curbing Calcium flow and Mitochondrial apoptosis. Cell Oncol. 2023;46:1031–1048. doi: 10.1007/s13402-023-00796-8. PubMed DOI PMC

Sherman L, Itzhaki H, Jackman A, Chen JJ, Koval D, et al. Inhibition of serum- and calcium-induced terminal differentiation of human keratinocytes by HPV 16 E6: study of the association with p53 degradation, inhibition of p53 transactivation, and binding to E6BP. Virology. 2002;292:309–320. doi: 10.1006/viro.2001.1263. PubMed DOI

Mei C, Jiang X, Gu Y, Wu X, Ma W, et al. YY1-mediated reticulocalbin-2 upregulation promotes the hepatocellular carcinoma progression via activating MYC signaling. Am J Cancer Res. 2021;11:2238–2251. PubMed PMC

Ding D, Huang H, Jiang W, Yu W, Zhu H, et al. Reticulocalbin-2 enhances hepatocellular carcinoma proliferation via modulating the EGFR-ERK pathway. Oncogene. 2017;36:6691–6700. doi: 10.1038/onc.2017.230. PubMed DOI

Norton PA, Gong Q, Mehta AS, Lu X, Block TM. Hepatitis B virus-mediated changes of apolipoprotein mRNA abundance in cultured hepatoma cells. J Virol. 2003;77:5503–5506. doi: 10.1128/JVI.77.9.5503-5506.2003. PubMed DOI PMC

Wang F-B, Zhu C, Liu X, Gao G. HBV inhibits apoB production via the suppression of MTP expression. Lipids Health Dis. 2011;10:207. doi: 10.1186/1476-511X-10-207. PubMed DOI PMC

Wu X, Niu J, Shi Y. Exosomes target HBV-host interactions to remodel the hepatic immune microenvironment. J Nanobiotechnol. 2024;22:315. doi: 10.1186/s12951-024-02544-y. PubMed DOI PMC

Knecht S, Eberl HC, Kreisz N, Ugwu UJ, Starikova T, et al. An Introduction to analytical challenges, approaches, and applications in mass spectrometry–based secretomics. Mol Cell Proteomics MCP. 2023;22:100636. doi: 10.1016/j.mcpro.2023.100636. PubMed DOI PMC

Abhange K, Kitata RB, Zhang J, Wang Y-T, Gaffrey MJ, et al. In-Depth proteome profiling of small extracellular vesicles isolated from cancer cell lines and patient serum. J Proteome Res. 2024;23:386–396. doi: 10.1021/acs.jproteome.3c00614. PubMed DOI PMC

Galardi A, Colletti M, Lavarello C, Di Paolo V, Mascio P, et al. Proteomic profiling of retinoblastoma-derived exosomes reveals potential biomarkers of vitreous seeding. Cancers. 2020;12:1555. doi: 10.3390/cancers12061555. PubMed DOI PMC

Park JE, Tan HS, Datta A, Lai RC, Zhang H, et al. Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics MCP. 2010;9:1085–1099. doi: 10.1074/mcp.M900381-MCP200. PubMed DOI PMC

Li C, Jiang L, Qi Y, Zhang D, Liu X, et al. Integration of metabolomics and proteomics reveals the underlying hepatotoxic mechanism of perfluorooctane sulfonate (PFOS) and 6:2 chlorinated polyfluoroalkyl ether sulfonic acid (6:2 Cl-PFESA) in primary human hepatocytes. Ecotoxicol Environ Saf. 2023;249:114361. doi: 10.1016/j.ecoenv.2022.114361. PubMed DOI

Heslop JA, Rowe C, Walsh J, Sison-Young R, Jenkins R, et al. Mechanistic evaluation of primary human hepatocyte culture using global proteomic analysis reveals a selective dedifferentiation profile. Arch Toxicol. 2017;91:439–452. doi: 10.1007/s00204-016-1694-y. PubMed DOI PMC

Ölander M, Wiśniewski JR, Artursson P. Cell-type-resolved proteomic analysis of the human liver. Liver Int. 2020;40:1770–1780. doi: 10.1111/liv.14452. PubMed DOI

Martinez-Val A, Guzmán UH, Olsen JV. Obtaining complete human proteomes. Annu Rev Genomics Hum Genet. 2022;23:99–121. doi: 10.1146/annurev-genom-112921-024948. PubMed DOI

Kongpracha P, Wiriyasermkul P, Isozumi N, Moriyama S, Kanai Y, et al. Simple but efficacious enrichment of integral membrane proteins and their interactions for in-depth membrane proteomics. Mol Cell Proteomics MCP. 2022;21:100206. doi: 10.1016/j.mcpro.2022.100206. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...