Visual versus region-of-interest based diffusion evaluation and their diagnostic impact in adult-type diffuse gliomas
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
NU23-08-00460
Czech Health Research Council grant
NU23-08-00460
Czech Health Research Council grant
NU23-08-00460
Czech Health Research Council grant
PubMed
41204956
DOI
10.1007/s00234-025-03832-6
PII: 10.1007/s00234-025-03832-6
Knihovny.cz E-zdroje
- Klíčová slova
- Diffusion-weighted imaging, Glioma, Isocitrate dehydrogenase, Magnetic resonance imaging,
- Publikační typ
- časopisecké články MeSH
PURPOSE: To evaluate the comparability and reproducibility of standardized visual versus region-of-interest (ROI)-based diffusion assessment and their prediction capacity for isocitrate dehydrogenase (IDH) mutation status in adult gliomas. METHODS: Preoperative MRI scans, including diffusion-weighted imaging (DWI), of grade 2-4 adult-type diffuse gliomas (n = 303) were evaluated by three raters and repeated after one month. Visual assessment used the categorization of the Visually AcceSAble Rembrandt Images-feature 17 classes (facilitated, dubious, restricted). ROI-based assessment placed circular ROI on the visually perceived lowest apparent diffusion coefficient (ADC) areas (absolute/aADC) and contralateral normal-appearing white matter (normalized/nADC). Agreement and correlation analysis between visual and ROI-based assessments were performed. Logistic regression was conducted for IDH prediction in the subgroup of 99 non-necrotic and non-hemorrhagic cases, selected from the full cohort with available IDH status. RESULTS: ROI-based assessment demonstrated superior inter- and intra-rater agreement (intraclass correlation coefficient[Formula: see text]0.56 (95%-CI: 0.48-0.63)) than visual assessment (Kendall's W/Cohen's weighted kappa[Formula: see text]0.34 (95%-CI: 0.26-0.42)). Thresholds of 1,090 and 623 × 10-6 mm2/s for aADC, and 1.38 and 0.80 for nADC, distinguishing facilitated, dubious, and restricted diffusion, significantly correlated with visual assessments (P < .001). IDH classification accuracy of visual assessment was comparable to that of the ROI-based method using thresholds of aADC 1,048 × 10- 6 mm2/sn and nADC 1.38 (visual vs. aADC/nADC: 69% vs. 73%/70%). However, neither method achieved a balanced performance between specificity (99% vs. 81%/75%) and sensitivity (14% vs. 57%/61%). CONCLUSION: ROI-based diffusion assessment guided by visual input showed superior reproducibility than visual assessment alone. Although visual assessment demonstrated strong correlation with ADC thresholds and comparable overall IDH prediction accuracy, the two methods differ in clinical profile: visual assessment offered high specificity but low sensitivity, whereas ROI-based assessment improved sensitivity at the cost of reduced specificity.
Amsterdam Neuroscience Brain Imaging Amsterdam Netherlands
Ankara Yıldırım Beyazıt University Faculty of Medicine Ankara Turkey
Cancer Center Amsterdam Imaging and Biomarkers Amsterdam Netherlands
Charles University The 2nd Faculty of Medicine Department of Pathophysiology Prague Czech Republic
Motol University Hospital Prague Czech Republic
Vrije Universiteit Amsterdam University Medical Center Amsterdam Netherlands
Zobrazit více v PubMed
Ellingson BM, Bendszus M, Boxerman J et al (2015) Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol 17:1188–1198. https://doi.org/10.1093/neuonc/nov095 PubMed DOI PMC
Wen PY, van den Bent M, Youssef G et al (2023) RANO 2.0: update to the response assessment in neuro-oncology criteria for high- and low-grade gliomas in adults. J Clin Oncol 41:5187–5199. https://doi.org/10.1200/JCO.23.01059 PubMed DOI PMC
Whitfield BT, Huse JT (2022) Classification of adult-type diffuse gliomas: impact of the World Health Organization 2021 update. Brain Pathol 32:e13062. https://doi.org/10.1111/bpa.13062 PubMed DOI PMC
Feraco P, Franciosi R, Picori L et al (2022) Conventional MRI-derived biomarkers of adult-type diffuse glioma molecular subtypes: a comprehensive review. Biomedicines. https://doi.org/10.3390/biomedicines10102490 PubMed DOI PMC
Hangel G, Schmitz-Abecassis B, Sollmann N et al (2023) Advanced MR techniques for preoperative glioma characterization: part 2. J Magn Reson Imaging 57:1676–1695. https://doi.org/10.1002/jmri.28663 PubMed DOI PMC
Hirschler L, Sollmann N, Schmitz-Abecassis B et al (2023) Advanced MR techniques for preoperative glioma characterization: part 1. J Magn Reson Imaging 57:1655–1675. https://doi.org/10.1002/jmri.28662 PubMed DOI PMC
Prysiazhniuk Y, Server A, Leske H et al (2024) Diffuse glioma molecular profiling with arterial spin labeling and dynamic susceptibility contrast perfusion MRI: a comparative study. Neuro Oncol Adv Vdae 113. https://doi.org/10.1093/noajnl/vdae113
Huisman TAGM (2010) Diffusion-weighted and diffusion tensor imaging of the brain, made easy. Cancer Imaging 10 Spec no A:S163–71. https://doi.org/10.1102/1470-7330.2010.9023
Thust SC, Heiland S, Falini A et al (2018) Glioma imaging in Europe: a survey of 220 centres and recommendations for best clinical practice. Eur Radiol 28:3306–3317. https://doi.org/10.1007/s00330-018-5314-5 PubMed DOI PMC
VASARI research project - the cancer imaging archive (TCIA) public access - cancer imaging archive wiki. https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project . Accessed 19 Dec 2023
Xing Z, Yang X, She D et al (2017) Noninvasive assessment of IDH mutational status in world health organization grade II and III astrocytomas using DWI and DSC-PWI combined with conventional MR imaging. AJNR Am J Neuroradiol 38:1138–1144. https://doi.org/10.3174/ajnr.A5171 PubMed DOI PMC
Azizova A, Prysiazhniuk Y, Wamelink IJHG et al (2024) Preoperative prediction of diffuse glioma type and grade in adults: a gadolinium-free MRI-based decision tree. Eur Radiol. https://doi.org/10.1007/s00330-024-11140-5
Thust SC, Maynard JA, Benenati M et al (2021) Regional and volumetric parameters for diffusion-weighted WHO grade II and III glioma genotyping: a method comparison. AJNR Am J Neuroradiol 42:441–447. https://doi.org/10.3174/ajnr.A6965 PubMed DOI PMC
Zhang L, Min Z, Tang M et al (2017) The utility of diffusion MRI with quantitative ADC measurements for differentiating high-grade from low-grade cerebral gliomas: evidence from a meta-analysis. J Neurol Sci 373:9–15. https://doi.org/10.1016/j.jns.2016.12.008 PubMed DOI
Azizova A, Prysiazhniuk Y, Wamelink IJHG et al (2024) Ten years of VASARI glioma features: systematic review and meta-analysis of their impact and performance. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A8274 PubMed DOI PMC
Ma X, Cheng K, Cheng G et al (2023) Apparent diffusion coefficient as imaging biomarker for identifying IDH mutation, 1p19q codeletion, and MGMT promoter methylation status in patients with glioma. J Magn Reson Imaging 58:732–738. https://doi.org/10.1002/jmri.28589 PubMed DOI
Wu J, Su R, Qiu D et al (2022) Analysis of DWI in the classification of glioma pathology and its therapeutic application in clinical surgery: a case-control study. Transl Cancer Res 11:805–812. https://doi.org/10.21037/tcr-22-114 PubMed DOI PMC
Cindil E, Sendur HN, Cerit MN et al (2022) Prediction of IDH mutation status in high-grade gliomas using DWI and high T1-weight DSC-MRI. Acad Radiol 29 Suppl 3:S52–S62. https://doi.org/10.1016/j.acra.2021.02.002 DOI
Smits M (2021) MRI biomarkers in neuro-oncology. Nat Rev Neurol 17:486–500. https://doi.org/10.1038/s41582-021-00510-y PubMed DOI
Guo X, Gu L, Li Y et al (2023) Histological and molecular glioblastoma, IDH-wildtype: a real-world landscape using the 2021 WHO classification of central nervous system tumors. Front Oncol 13:1200815. https://doi.org/10.3389/fonc.2023.1200815 PubMed DOI PMC
Ahn SS, An C, Park YW et al (2021) Identification of magnetic resonance imaging features for the prediction of molecular profiles of newly diagnosed glioblastoma. J Neurooncol 154:83–92. https://doi.org/10.1007/s11060-021-03801-y PubMed DOI
Sahu A, Patnam NG, Goda JS et al (2022) Multiparametric magnetic resonance imaging correlates of isocitrate dehydrogenase mutation in WHO high-grade astrocytomas. J Pers Med. https://doi.org/10.3390/jpm13010072 PubMed DOI PMC
Gemini L, Tortora M, Giordano P et al (2023) Vasari scoring system in discerning between different degrees of glioma and IDH status prediction: a possible machine learning application? J Imaging Sci Technol. https://doi.org/10.3390/jimaging9040075 DOI
Azizova A, Wamelink IJHG, Prysiazhniuk Y et al (2024) Human performance in predicting enhancement quality of gliomas using gadolinium-free MRI sequences. J Neuroimaging. https://doi.org/10.1111/jon.13233
Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174 PubMed DOI
Schober P, Boer C, Schwarte LA (2018) Correlation coefficients: appropriate use and interpretation. Anesth Analg 126:1763–1768. https://doi.org/10.1213/ANE.0000000000002864 PubMed DOI
Lunardon N, Menardi G, Torelli N (2014) ROSE: a package for binary imbalanced learning. R J 6:79 DOI
Park YW, Han K, Ahn SS et al (2018) Prediction of IDH1-mutation and 1p/19q-codeletion status using preoperative MR imaging phenotypes in lower grade gliomas. AJNR Am J Neuroradiol 39:37–42. https://doi.org/10.3174/ajnr.A5421 PubMed DOI PMC
Zhou H, Vallières M, Bai HX et al (2017) MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro Oncol 19:862–870. https://doi.org/10.1093/neuonc/now256 PubMed DOI PMC
Hyare H, Rice L, Thust S et al (2019) Modelling MR and clinical features in grade II/III astrocytomas to predict IDH mutation status. Eur J Radiol 114:120–127. https://doi.org/10.1016/j.ejrad.2019.03.003 PubMed DOI
Su C-Q, Lu S-S, Han Q-Y et al (2019) Intergrating conventional MRI, texture analysis of dynamic contrast-enhanced MRI, and susceptibility weighted imaging for glioma grading. Acta Radiol 60:777–787. https://doi.org/10.1177/0284185118801127 PubMed DOI
Maynard J, Okuchi S, Wastling S et al (2020) World health organization grade II/III glioma molecular status: prediction by MRI morphologic features and apparent diffusion coefficient. Radiology 296:111–121. https://doi.org/10.1148/radiol.2020191832 PubMed DOI
Hu Y-C, Yan L-F, Sun Q et al (2017) Comparison between ultra-high and conventional mono b-value DWI for preoperative glioma grading. Oncotarget 8:37884–37895. https://doi.org/10.18632/oncotarget.14180 PubMed DOI
Phuttharak W, Thammaroj J, Wara-Asawapati S, Panpeng K (2020) Grading gliomas capability: comparison between visual assessment and apparent diffusion coefficient (ADC) value measurement on diffusion-weighted imaging (DWI). Asian Pac J Cancer Prev 21:385–390. https://doi.org/10.31557/APJCP.2020.21.2.385 PubMed DOI PMC
Su C-Q, Lu S-S, Zhou M-D et al (2019) Combined texture analysis of diffusion-weighted imaging with conventional MRI for non-invasive assessment of IDH1 mutation in anaplastic gliomas. Clin Radiol 74:154–160. https://doi.org/10.1016/j.crad.2018.10.002 PubMed DOI
Cao M, Suo S, Zhang X et al (2021) Qualitative and quantitative MRI analysis in IDH1 genotype prediction of lower-grade gliomas: a machine learning approach. BioMed Res Int 2021(1):1235314. https://doi.org/10.1155/2021/1235314 PubMed DOI PMC
Villanueva-Meyer JE, Wood MD, Choi BS et al (2018) MRI features and IDH mutational status of grade II diffuse gliomas: impact on diagnosis and prognosis. AJR Am J Roentgenol 210:621–628. https://doi.org/10.2214/AJR.17.18457 PubMed DOI
Wasserman JK, Nicholas G, Yaworski R et al (2015) Radiological and pathological features associated with IDH1-R132H mutation status and early mortality in newly diagnosed anaplastic astrocytic tumours. PLoS One 10:e0123890. https://doi.org/10.1371/journal.pone.0123890 PubMed DOI PMC
Liu S, Zhang Y, Kong Z et al (2022) Feasibility of evaluating the histologic and genetic subtypes of WHO grade II-IV gliomas by diffusion-weighted imaging. BMC Neurosci 23:72. https://doi.org/10.1186/s12868-022-00750-8 PubMed DOI PMC