Whole-genome resequencing of the wild barley diversity collection: a resource for identifying and exploiting genetic variation for cultivated barley improvement

. 2026 Jan 07 ; 16 (1) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41206694

Grantová podpora
National Institute of Food and Agriculture
U.S. Department of Agriculture
#MIN-22-085 Hatch project
Exploiting Wild Relatives for Cultivated Wheat and Barley Improvement
University of Minnesota
US-5089-18 Binational Agriculture Research and Development Fund
American Malting Barley Association
031B0190 German Ministry of Research and Education
460265804 German Research Foundation
Recovering and Exploiting Old and New Barley Diversity for Future-Ready Agriculture
Biodiversity for Opportunities, Livelihoods and Development
QZA-20/0154 Government of Norway
King Abdullah University of Science and Technology
CF15-0236 Carlsberg Foundation
TowArds Next GENeration Crops
ERDF Programme Johannes Amos Comenius
National Science Foundation
13-39348 Plant Genome Research Program
3625-21000-067-00D USDA-Agricultural Research Service
5030-21220-068-000-D USDA-Agricultural Research Service
5090-21430-011-000D USDA-Agricultural Research Service
5090-43440-007-000D USDA-Agricultural Research Service
ARS
CRIS #5062-21220-025-000D United States Department of Agriculture-Agricultural Research Service

To exploit allelic variation in Hordeum vulgare subsp. spontaneum, the Wild Barley Diversity Collection was subjected to paired-end Illumina sequencing at ∼9 × depth and evaluated for several agronomic traits. We discovered 240.2 million single nucleotide polymorphisms (SNPs) after alignment to the Morex V3 assembly and 24.4 million short (1 to 50 bp) insertions and deletions. A genome-wide association study of lemma color identified one marker-trait association (MTA) on chromosome 1H close to HvBlp, the cloned gene controlling black lemma. Four MTAs were identified for seedling stem rust resistance, including 2 novel loci on chromosomes 1H and 6H and one co-locating to the complex RMRL1-RMRL2 locus on 5H. The whole-genome sequence data described herein will facilitate the identification and utilization of new alleles for barley improvement.

Agriculture and Agri Food Canada Lacombe Research and Development Centre Lacombe Alberta T4L 1W1 Canada

American Malting Barley Association Inc Brookfield WI 53005 United States

Anheuser Busch InBev Fort Collins CO 80524 United States

Biodiversity and Crop Improvement International Center for Agricultural Research in the Dry Areas Rabat BP6299 Morocco

Bioinformatics and Information Technology Leibniz Institute of Plant Genetics and Crop Plant Research Seeland Saxony Anhalt 06466 Germany

Brandon Research and Development Centre Agriculture and Agri Food Canada Brandon Manitoba R7A 5Y3 Canada

Cell and Molecular Sciences The James Hutton Institute Dundee Scotland DD2 5DA UK

Centre de Recherche Et d'innovation Sur Les Végétaux Université Laval Québec G1V 0A6 Canada

Centre of Plant Structural and Functional Genomics Institute of Experimental Botany Czech Academy of Sciences Olomouc CZ 77900 Czech Republic

Cereal Crops Improvement Research Unit USDA ARS Fargo ND 58102 United States

Cereal Crops Research Unit USDA ARS Madison WI 53726 United States

Cereal Disease Laboratory USDA ARS Saint Paul MN 55108 United States

Cluster of Excellence on Plant Sciences Düsseldorf North Rhine Westphalia 40225 Germany

Corn Insects and Crop Genetics Research Unit USDA ARS Ames IA 50011 United States

Crop Plant Genetics Institute of Agricultural and Nutritional Sciences Martin Luther University of Halle Wittenberg Halle Saxony Anhalt 06120 Germany

Département de Phytologie Université Laval Québec G1V 0A6 Canada

Department of Agricultural and Food Sciences University of Bologna Bologna 40127 Italy

Department of Agricultural Food and Nutritional Sciences University of Alberta Edmonton AB T6G 2P5 Canada

Department of Agronomy and Plant Genetics University of Minnesota Twin Cities Saint Paul MN 55108 United States

Department of Agronomy Zhejiang University Hangzhou Zhejiang 310029 China

Department of Crop and Soil Science Oregon State University Corvallis OR 97331 United States

Department of Crop and Soil Sciences Washington State University Pullman WA 99164 6420 United States

Department of Field Crops Faculty of Agriculture University of Çukurova Sarıçam Adana 1250 Turkey

Department of Frontier Research and Development Kazusa DNA Research Institute Kisarazu Chiba 292 0818 Japan

Department of Integrated Plant Protection Agrotest Fyto Ltd Kroměříž CZ 767 01 Czech Republic

Department of Plant Pathology Entomology and Microbiology Iowa State University Ames IA 50011 United States

Department of Plant Pathology University of Minnesota Twin Cities Saint Paul MN 55108 United States

Department of Plant Sciences North Dakota State University Fargo ND 58102 United States

Department of Primary Industries and Regional Development Government of Western Australia Perth WA 6151 Australia

Department of Soil and Crop Sciences Texas A and M AgriLife Research Dallas TX 75252 United States

Department of Vegetables and Field Crops ARO Volcani Center Rishon LeZion 7505101 Israel

Division of Plant Sciences The University of Dundee Dundee Scotland DD2 5DA UK

Faculty of Agriculture Setsunan University Hirakata Osaka 573 0101 Japan

Genebank Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Seeland Saxony Anhalt 06466 Germany

Genetic Resources Unit International Center for Agricultural Research in the Dry Areas Praha 15000 Czech Republic

Global Crop Diversity Trust Bonn North Rhine Westphalia 53113 Germany

Halle Jena Leipzig German Centre for Integrative Biodiversity Research Leipzig Saxony 04103 Germany

Institut de Biologie Intégrative et des Systèmes Université Laval Québec G1V 0A6 Canada

Institute for Resistance Research and Stress Tolerance Julius Kühn Institute Quedlinburg Saxony Anhalt 06484 Germany

Institute of Agricultural and Nutritional Sciences Martin Luther University Halle Wittenberg Halle Saxony Anhalt 06120 Germany

Institute of Crop Science National Agriculture and Food Research Organization Tsukuba Ibaraki 305 8602 Japan

Institute of Experimental Botany Centre of Plant Structural and Functional Genomics Olomouc 779 00 Czech Republic

Institute of Plant Genetics Heinrich Heine Universität Düsseldorf Düsseldorf North Rhine Westphalia 40225 Germany

Institute of Plant Science and Resources Okayama University Kurashiki Okayama 710 0046 Japan

Leibniz Institute of Plant Genetics and Crop Plant Research Seeland Saxony Anhalt 06466 Germany

Minnesota Supercomputing Institute University of Minnesota Twin Cities Minneapolis MN 55455 United States

Plant Breeding and Genetics Section School of Integrative Plant Science Cornell University Ithaca NY 14853 1902 United States

Plant Genome and Systems Biology Neuherberg Bavaria 85764 Germany

Plant Physiology and Genetics Unit U S Arid Land Agricultural Research Center Maricopa AZ 85138 United States

Plant Science Program Biological and Environmental Science and Engineering Division Thuwal 23955 6900 Saudi Arabia

Raw Materials Carlsberg Research Laboratory Copenhagen DK 1799 Denmark

Research Centre for Genomics and Bioinformatics Council for Agricultural Research and Economics Fiorenzuola d'Arda Piacenza 29017 Italy

Roche Information Solutions Roche Diagnostics GmbH Penzberg Bavaria 82377 Germany

School of Agriculture Food and Ecosystem Sciences University of Melbourne Melbourne Victoria 3010 Australia

School of Life Sciences Technical University of Munich Freising Bavaria 85354 Germany

School of Plant Sciences and Food Security Tel Aviv University Tel Aviv 69978 Israel

Shandong Academy of Agricultural Sciences Crop Research Institute Jinan Shandong 250100 China

The University of Adelaide Adelaide SA 5064 Australia

Western Crop Genetics Alliance Food Futures Institute School of Agriculture Murdoch University Murdock WA 6150 Australia

Zobrazit více v PubMed

Arora  D, Gross  T, Brueggeman  R. 2013. Allele characterization of genes required for PubMed DOI

Baumdicker  F  et al.  2022. Efficient ancestry and mutation simulation with msprime 1.0. Genetics. 220:iyab229. 10.1093/genetics/iyab229. PubMed DOI PMC

Bayer  MM  et al.  2017. Development and evaluation of a barley 50k iSelect SNP array. Front Plant Sci.  8:1792. 10.3389/fpls.2017.01792. PubMed DOI PMC

Bradbury  PJ  et al.  2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 23:2633–2635. 10.1093/bioinformatics/btm308. PubMed DOI

Broad Institute . 2019. Picard. GItHub.

Brueggeman  R  et al.  2008. The stem rust resistance gene PubMed DOI PMC

Chen  S, Zhou  Y, Chen  Y, Gu  J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 34:i884–i890. 10.1093/bioinformatics/bty560. PubMed DOI PMC

Civáň  P  et al.  2024. Genetic erosion in domesticated barley and a hypothesis of a North African centre of diversity. Ecol Evol.  14:e70068. 10.1002/ece3.70068. PubMed DOI PMC

Close  TJ  et al.  2009. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 10:582. 10.1186/1471-2164-10-582. PubMed DOI PMC

Comadran  J  et al.  2011. Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theor Appl Genet.  122:523–531. 10.1007/s00122-010-1466-7. PubMed DOI PMC

Comadran  J  et al.  2012. Natural variation in a homolog of antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet.  44:1388–1392. 10.1038/ng.2447. PubMed DOI

Danecek  P  et al.  2021. Twelve years of SAMtools and BCFtools. GigaScience. 10:giab008. 10.1093/gigascience/giab008. PubMed DOI PMC

Fang  Z  et al.  2014. Two genomic regions contribute disproportionately to geographic differentiation in wild barley. G3 (Bethesda).  4:1193–1203. 10.1534/g3.114.010561. PubMed DOI PMC

FAO . 2017. FAOSTAT crops. http://www.fao.org/faostat/en/#data/QC.

Franckowiak  JD, Lundqvist  U. 1997. New and revised names for barley genes. Barley Genetics Newsletter. 26:4–8. https://graingenes.org/ggpages/bgn/26/.

Guo  Y  et al.  2025. A haplotype-based evolutionary history of barley domestication. Nature. (accepted for publication, in press). 10.1038/s41586-025-09533-7. PubMed DOI PMC

Harlan  JR, Zohary  D. 1966. Distribution of wild wheats and barley. Science. 153:1074–1080. 10.1126/science.153.3740.1074. PubMed DOI

Huang  M, Liu  X, Zhou  Y, Summers  RM, Zhang  Z. 2019. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience. 8:giy154. 10.1093/gigascience/giy154. PubMed DOI PMC

Jayakodi  M  et al.  2020. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature. 588:284–289. 10.1038/s41586-020-2947-8. PubMed DOI PMC

Jayakodi  M  et al.  2024. Structural variation in the pangenome of wild and domesticated barley. Nature. 636:654–662. 10.1038/s41586-024-08187-1. PubMed DOI PMC

Kono  TJY  et al.  2016. The role of deleterious substitutions in crop genomes. Mol Biol Evol.  33:2307–2317. 10.1093/molbev/msw102. PubMed DOI PMC

Kusmec  A, Schnable  PS. 2018. FarmCPUpp: efficient large-scale genomewide association studies. Plant Direct. 2:e00053. 10.1002/pld3.53. PubMed DOI PMC

Li  B  et al.  2024. Transcriptional convergence after repeated duplication of an amino acid transporter gene leads to the independent emergence of the black husk/pericarp trait in barley and rice. Plant Biotechnol J.  22:1282–1298. 10.1111/pbi.14264. PubMed DOI PMC

Li  H  et al.  2009. The sequence alignment/map format and SAMtools. Bioinformatics. 25:2078–2079. 10.1093/bioinformatics/btp352. PubMed DOI PMC

Li  H. 2013. [Heng Li—Compares BWA to other long read aligners like CUSHAW2] Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM [preprint]. arXiv [q-bio.GN]. 10.48550/arXiv.1303.3997 DOI

Liu  C  et al.  2024. Phenotypically wild barley shows evidence of introgression from cultivated barley [preprint]. bioRxiv 601622. 10.1101/2024.07.01.601622. DOI

Mahalingam  R, Sallam  AH, Steffenson  BJ, Fiedler  JD, Walling  JG. 2020. Genome-wide association analysis of natural variation in seed tocochromanols of barley. Plant Genome. 13:e20039. 10.1002/tpg2.20039. PubMed DOI

Mascher  M. 2020. Pseudomolecules and annotation of the third version of the reference genome sequence assembly of barley cv. Morex [Morex V3]. E!DAL—Plant Genomics and Phenomics Research Data Repository (PGP). 10.5447/ipk/2021/3. DOI

Mascher  M  et al.  2021. Long-read sequence assembly: a technical evaluation in barley. Plant Cell. 33:1888–1906. 10.1093/plcell/koab077. PubMed DOI PMC

McKenna  A  et al.  2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.  20:1297–1303. 10.1101/gr.107524.110. PubMed DOI PMC

McLaren  W  et al.  2016. The Ensembl variant effect predictor. Genome Biol.  17:122. 10.1186/s13059-016-0974-4. PubMed DOI PMC

Milner  SG  et al.  2019. Genebank genomics highlights the diversity of a global barley collection. Nat Genet.  51:319–326. 10.1038/s41588-018-0266-x. PubMed DOI

Morrell  PL, Toleno  DM, Lundy  KE, Clegg  MT. 2006. Estimating the contribution of mutation, recombination and gene conversion in the generation of haplotypic diversity. Genetics. 173:1705–1723. 10.1534/genetics.105.054502. PubMed DOI PMC

Roy  JK  et al.  2010. Association mapping of spot blotch resistance in wild barley. Mol Breed.  26:243–256. 10.1007/s11032-010-9402-8. PubMed DOI PMC

Russell  J  et al.  2016. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet.  48:1024–1030. 10.1038/ng.3612. PubMed DOI

Sallam  AH  et al.  2017. Genome-wide association mapping of stem rust resistance in PubMed DOI PMC

Schindelin  J  et al.  2012. Fiji: an open-source platform for biological-image analysis. Nat Methods.  9:676–682. 10.1038/nmeth.2019. PubMed DOI PMC

Schmid  K, Kilian  B, Russell  J. 2018. Barley domestication, adaptation and population genomics. 10.1007/978-3-319-92528-8_17. DOI

Steffenson  BJ  et al.  2007. A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Aust J Agric Res.  58:532–544. 10.1071/AR07123. DOI

Tajima  F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 123:585–595. 10.1093/genetics/123.3.585. PubMed DOI PMC

Velásquez-Zapata  V, Elmore  JM, Fuerst  G, Wise  RP. 2022. An interolog-based barley interactome as an integration framework for immune signaling. Genetics. 221:iyac056. 10.1093/genetics/iyac056. PubMed DOI PMC

Walling  JG  et al.  2022. Quantitative trait loci impacting grain β-glucan content in wild barley ( DOI

Wang  X  et al.  2013. The PubMed DOI

Wang  J, Zhang  Z. 2021. GAPIT version 3: boosting power and accuracy for genomic association and prediction. Genomics Proteomics Bioinformatics.  19:629–640. 10.1016/j.gpb.2021.08.005. PubMed DOI PMC

Yao  E  et al.  2022. GrainGenes: a data-rich repository for small grains genetics and genomics. Database. 2022:baac034   10.1093/database/baac034. PubMed DOI PMC

Yu  J  et al.  2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet.  38:203–208. 10.1038/ng1702. PubMed DOI

Yu  G, Hatta  A, Periyannan  S, Lagudah  E, Wulff  BBH. 2017. Isolation of wheat genomic DNA for gene mapping and cloning. In: Kang  PB, editor. Methods in molecular biology, vol. 1659. Humana Press. p. 207–214. 10.1007/978-1-4939-7249-4_18. PubMed DOI

Zohary  D, Hopf  M, Weiss  E. 2012. Cereals. In: Domestication of plants in the old world: the origin and spread of domesticated plants in southwest Asia, Europe, and the Mediterranean basin. Oxford University Press. p. 52–58. 10.1093/acprof:osobl/9780199549061.001.0001. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...