Whole-genome resequencing of the wild barley diversity collection: a resource for identifying and exploiting genetic variation for cultivated barley improvement
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
National Institute of Food and Agriculture
U.S. Department of Agriculture
#MIN-22-085
Hatch project
Exploiting Wild Relatives for Cultivated Wheat and Barley Improvement
University of Minnesota
US-5089-18
Binational Agriculture Research and Development Fund
American Malting Barley Association
031B0190
German Ministry of Research and Education
460265804
German Research Foundation
Recovering and Exploiting Old and New Barley Diversity for Future-Ready Agriculture
Biodiversity for Opportunities, Livelihoods and Development
QZA-20/0154
Government of Norway
King Abdullah University of Science and Technology
CF15-0236
Carlsberg Foundation
TowArds Next GENeration Crops
ERDF Programme Johannes Amos Comenius
National Science Foundation
13-39348
Plant Genome Research Program
3625-21000-067-00D
USDA-Agricultural Research Service
5030-21220-068-000-D
USDA-Agricultural Research Service
5090-21430-011-000D
USDA-Agricultural Research Service
5090-43440-007-000D
USDA-Agricultural Research Service
ARS
CRIS #5062-21220-025-000D
United States Department of Agriculture-Agricultural Research Service
PubMed
41206694
PubMed Central
PMC12774595
DOI
10.1093/g3journal/jkaf261
PII: 8316958
Knihovny.cz E-zdroje
- Klíčová slova
- Hordeum vulgare subsp. spontaneum, agronomic traits, genome-wide association study, whole genome sequence data,
- MeSH
- alely MeSH
- celogenomová asociační studie MeSH
- fenotyp MeSH
- genetická variace * MeSH
- genom rostlinný * MeSH
- ječmen (rod) * genetika MeSH
- jednonukleotidový polymorfismus MeSH
- lokus kvantitativního znaku MeSH
- mapování chromozomů MeSH
- sekvenování celého genomu * MeSH
- Publikační typ
- časopisecké články MeSH
To exploit allelic variation in Hordeum vulgare subsp. spontaneum, the Wild Barley Diversity Collection was subjected to paired-end Illumina sequencing at ∼9 × depth and evaluated for several agronomic traits. We discovered 240.2 million single nucleotide polymorphisms (SNPs) after alignment to the Morex V3 assembly and 24.4 million short (1 to 50 bp) insertions and deletions. A genome-wide association study of lemma color identified one marker-trait association (MTA) on chromosome 1H close to HvBlp, the cloned gene controlling black lemma. Four MTAs were identified for seedling stem rust resistance, including 2 novel loci on chromosomes 1H and 6H and one co-locating to the complex RMRL1-RMRL2 locus on 5H. The whole-genome sequence data described herein will facilitate the identification and utilization of new alleles for barley improvement.
American Malting Barley Association Inc Brookfield WI 53005 United States
Anheuser Busch InBev Fort Collins CO 80524 United States
Cell and Molecular Sciences The James Hutton Institute Dundee Scotland DD2 5DA UK
Centre de Recherche Et d'innovation Sur Les Végétaux Université Laval Québec G1V 0A6 Canada
Cereal Crops Improvement Research Unit USDA ARS Fargo ND 58102 United States
Cereal Crops Research Unit USDA ARS Madison WI 53726 United States
Cereal Disease Laboratory USDA ARS Saint Paul MN 55108 United States
Cluster of Excellence on Plant Sciences Düsseldorf North Rhine Westphalia 40225 Germany
Corn Insects and Crop Genetics Research Unit USDA ARS Ames IA 50011 United States
Département de Phytologie Université Laval Québec G1V 0A6 Canada
Department of Agricultural and Food Sciences University of Bologna Bologna 40127 Italy
Department of Agronomy Zhejiang University Hangzhou Zhejiang 310029 China
Department of Crop and Soil Science Oregon State University Corvallis OR 97331 United States
Department of Crop and Soil Sciences Washington State University Pullman WA 99164 6420 United States
Department of Field Crops Faculty of Agriculture University of Çukurova Sarıçam Adana 1250 Turkey
Department of Integrated Plant Protection Agrotest Fyto Ltd Kroměříž CZ 767 01 Czech Republic
Department of Plant Pathology University of Minnesota Twin Cities Saint Paul MN 55108 United States
Department of Plant Sciences North Dakota State University Fargo ND 58102 United States
Department of Soil and Crop Sciences Texas A and M AgriLife Research Dallas TX 75252 United States
Department of Vegetables and Field Crops ARO Volcani Center Rishon LeZion 7505101 Israel
Division of Plant Sciences The University of Dundee Dundee Scotland DD2 5DA UK
Faculty of Agriculture Setsunan University Hirakata Osaka 573 0101 Japan
Global Crop Diversity Trust Bonn North Rhine Westphalia 53113 Germany
Halle Jena Leipzig German Centre for Integrative Biodiversity Research Leipzig Saxony 04103 Germany
Institut de Biologie Intégrative et des Systèmes Université Laval Québec G1V 0A6 Canada
Institute of Plant Science and Resources Okayama University Kurashiki Okayama 710 0046 Japan
Leibniz Institute of Plant Genetics and Crop Plant Research Seeland Saxony Anhalt 06466 Germany
Plant Genome and Systems Biology Neuherberg Bavaria 85764 Germany
Raw Materials Carlsberg Research Laboratory Copenhagen DK 1799 Denmark
Roche Information Solutions Roche Diagnostics GmbH Penzberg Bavaria 82377 Germany
School of Life Sciences Technical University of Munich Freising Bavaria 85354 Germany
School of Plant Sciences and Food Security Tel Aviv University Tel Aviv 69978 Israel
Shandong Academy of Agricultural Sciences Crop Research Institute Jinan Shandong 250100 China
Zobrazit více v PubMed
Arora D, Gross T, Brueggeman R. 2013. Allele characterization of genes required for PubMed DOI
Baumdicker F et al. 2022. Efficient ancestry and mutation simulation with msprime 1.0. Genetics. 220:iyab229. 10.1093/genetics/iyab229. PubMed DOI PMC
Bayer MM et al. 2017. Development and evaluation of a barley 50k iSelect SNP array. Front Plant Sci. 8:1792. 10.3389/fpls.2017.01792. PubMed DOI PMC
Bradbury PJ et al. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 23:2633–2635. 10.1093/bioinformatics/btm308. PubMed DOI
Broad Institute . 2019. Picard. GItHub.
Brueggeman R et al. 2008. The stem rust resistance gene PubMed DOI PMC
Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 34:i884–i890. 10.1093/bioinformatics/bty560. PubMed DOI PMC
Civáň P et al. 2024. Genetic erosion in domesticated barley and a hypothesis of a North African centre of diversity. Ecol Evol. 14:e70068. 10.1002/ece3.70068. PubMed DOI PMC
Close TJ et al. 2009. Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics. 10:582. 10.1186/1471-2164-10-582. PubMed DOI PMC
Comadran J et al. 2011. Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theor Appl Genet. 122:523–531. 10.1007/s00122-010-1466-7. PubMed DOI PMC
Comadran J et al. 2012. Natural variation in a homolog of antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet. 44:1388–1392. 10.1038/ng.2447. PubMed DOI
Danecek P et al. 2021. Twelve years of SAMtools and BCFtools. GigaScience. 10:giab008. 10.1093/gigascience/giab008. PubMed DOI PMC
Fang Z et al. 2014. Two genomic regions contribute disproportionately to geographic differentiation in wild barley. G3 (Bethesda). 4:1193–1203. 10.1534/g3.114.010561. PubMed DOI PMC
FAO . 2017. FAOSTAT crops. http://www.fao.org/faostat/en/#data/QC.
Franckowiak JD, Lundqvist U. 1997. New and revised names for barley genes. Barley Genetics Newsletter. 26:4–8. https://graingenes.org/ggpages/bgn/26/.
Guo Y et al. 2025. A haplotype-based evolutionary history of barley domestication. Nature. (accepted for publication, in press). 10.1038/s41586-025-09533-7. PubMed DOI PMC
Harlan JR, Zohary D. 1966. Distribution of wild wheats and barley. Science. 153:1074–1080. 10.1126/science.153.3740.1074. PubMed DOI
Huang M, Liu X, Zhou Y, Summers RM, Zhang Z. 2019. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience. 8:giy154. 10.1093/gigascience/giy154. PubMed DOI PMC
Jayakodi M et al. 2020. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature. 588:284–289. 10.1038/s41586-020-2947-8. PubMed DOI PMC
Jayakodi M et al. 2024. Structural variation in the pangenome of wild and domesticated barley. Nature. 636:654–662. 10.1038/s41586-024-08187-1. PubMed DOI PMC
Kono TJY et al. 2016. The role of deleterious substitutions in crop genomes. Mol Biol Evol. 33:2307–2317. 10.1093/molbev/msw102. PubMed DOI PMC
Kusmec A, Schnable PS. 2018. FarmCPUpp: efficient large-scale genomewide association studies. Plant Direct. 2:e00053. 10.1002/pld3.53. PubMed DOI PMC
Li B et al. 2024. Transcriptional convergence after repeated duplication of an amino acid transporter gene leads to the independent emergence of the black husk/pericarp trait in barley and rice. Plant Biotechnol J. 22:1282–1298. 10.1111/pbi.14264. PubMed DOI PMC
Li H et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics. 25:2078–2079. 10.1093/bioinformatics/btp352. PubMed DOI PMC
Li H. 2013. [Heng Li—Compares BWA to other long read aligners like CUSHAW2] Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM [preprint]. arXiv [q-bio.GN]. 10.48550/arXiv.1303.3997 DOI
Liu C et al. 2024. Phenotypically wild barley shows evidence of introgression from cultivated barley [preprint]. bioRxiv 601622. 10.1101/2024.07.01.601622. DOI
Mahalingam R, Sallam AH, Steffenson BJ, Fiedler JD, Walling JG. 2020. Genome-wide association analysis of natural variation in seed tocochromanols of barley. Plant Genome. 13:e20039. 10.1002/tpg2.20039. PubMed DOI
Mascher M. 2020. Pseudomolecules and annotation of the third version of the reference genome sequence assembly of barley cv. Morex [Morex V3]. E!DAL—Plant Genomics and Phenomics Research Data Repository (PGP). 10.5447/ipk/2021/3. DOI
Mascher M et al. 2021. Long-read sequence assembly: a technical evaluation in barley. Plant Cell. 33:1888–1906. 10.1093/plcell/koab077. PubMed DOI PMC
McKenna A et al. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297–1303. 10.1101/gr.107524.110. PubMed DOI PMC
McLaren W et al. 2016. The Ensembl variant effect predictor. Genome Biol. 17:122. 10.1186/s13059-016-0974-4. PubMed DOI PMC
Milner SG et al. 2019. Genebank genomics highlights the diversity of a global barley collection. Nat Genet. 51:319–326. 10.1038/s41588-018-0266-x. PubMed DOI
Morrell PL, Toleno DM, Lundy KE, Clegg MT. 2006. Estimating the contribution of mutation, recombination and gene conversion in the generation of haplotypic diversity. Genetics. 173:1705–1723. 10.1534/genetics.105.054502. PubMed DOI PMC
Roy JK et al. 2010. Association mapping of spot blotch resistance in wild barley. Mol Breed. 26:243–256. 10.1007/s11032-010-9402-8. PubMed DOI PMC
Russell J et al. 2016. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat Genet. 48:1024–1030. 10.1038/ng.3612. PubMed DOI
Sallam AH et al. 2017. Genome-wide association mapping of stem rust resistance in PubMed DOI PMC
Schindelin J et al. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9:676–682. 10.1038/nmeth.2019. PubMed DOI PMC
Schmid K, Kilian B, Russell J. 2018. Barley domestication, adaptation and population genomics. 10.1007/978-3-319-92528-8_17. DOI
Steffenson BJ et al. 2007. A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Aust J Agric Res. 58:532–544. 10.1071/AR07123. DOI
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 123:585–595. 10.1093/genetics/123.3.585. PubMed DOI PMC
Velásquez-Zapata V, Elmore JM, Fuerst G, Wise RP. 2022. An interolog-based barley interactome as an integration framework for immune signaling. Genetics. 221:iyac056. 10.1093/genetics/iyac056. PubMed DOI PMC
Walling JG et al. 2022. Quantitative trait loci impacting grain β-glucan content in wild barley ( DOI
Wang X et al. 2013. The PubMed DOI
Wang J, Zhang Z. 2021. GAPIT version 3: boosting power and accuracy for genomic association and prediction. Genomics Proteomics Bioinformatics. 19:629–640. 10.1016/j.gpb.2021.08.005. PubMed DOI PMC
Yao E et al. 2022. GrainGenes: a data-rich repository for small grains genetics and genomics. Database. 2022:baac034 10.1093/database/baac034. PubMed DOI PMC
Yu J et al. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet. 38:203–208. 10.1038/ng1702. PubMed DOI
Yu G, Hatta A, Periyannan S, Lagudah E, Wulff BBH. 2017. Isolation of wheat genomic DNA for gene mapping and cloning. In: Kang PB, editor. Methods in molecular biology, vol. 1659. Humana Press. p. 207–214. 10.1007/978-1-4939-7249-4_18. PubMed DOI
Zohary D, Hopf M, Weiss E. 2012. Cereals. In: Domestication of plants in the old world: the origin and spread of domesticated plants in southwest Asia, Europe, and the Mediterranean basin. Oxford University Press. p. 52–58. 10.1093/acprof:osobl/9780199549061.001.0001. DOI