Pentagonal Bipyramidal First-Row Transition Metal Complexes with Macrocyclic Ligand Containing Two Pyridine-N-Oxide Pendant Arms: Structural, Magnetic, and Theoretical Studies
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41208578
PubMed Central
PMC12648663
DOI
10.1021/acs.inorgchem.5c03514
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A heptadentate 15-membered pyridine-based macrocyclic ligand containing two pyridine-N-oxide pendant arms (L4 = 3,12-bis((pyridine-1-oxide-2-yl)methyl)-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]octadeca-1(18),14,16-triene) was synthesized together with its first-row transition metal complexes with the general formula [M(L4)](ClO4)2·1DMF (MII = Mn (1), Fe (2), Co (3), and Ni (4); DMF = N,N'-dimethylformamide), which were thoroughly investigated. According to the obtained X-ray crystal structures, all complexes possess axially compressed pentagonal bipyramidal geometry with a coordination number of 7 for 1-3 or 5 + 2 for Ni(II) complex 4 with a large Jahn-Teller distortion. Fe(II), Co(II), and Ni(II) complexes 2, 3, and 4 show pronounced magnetic anisotropy (D = 4.47, 30.10, -7.58 cm-1, respectively). The magnetic properties of the studied complexes were supported by theoretical calculations, which corresponded very well to the experimental data for magnetic anisotropy. Furthermore, complex 3 showed a field-induced single-molecule magnet behavior described best by the combination of direct (DHm = 145 K-1s-1) and Raman (C = 0.58 K-ns-1 for n = 5.76) relaxation processes. Magneto-structural correlation for Fe(II)/Co(II)/Ni(II) complexes with L4 and previously studied structurally similar ligands revealed a significant impact of the coordination ability of the functional group in pendant arms on the final magnetic anisotropy (π-acceptors appear to be more suitable).
Zobrazit více v PubMed
Sutter J.-P., Béreau V., Jubault V., Bretosh K., Pichon C., Duhayon C.. Magnetic anisotropy of transition metal and lanthanide ions in pentagonal bipyramidal geometry. Chem. Soc. Rev. 2022;51(8):3280–3313. doi: 10.1039/D2CS00028H. PubMed DOI
Boča R.. Zero-field splitting in metal complexes. Coord. Chem. Rev. 2004;248(9):757–815. doi: 10.1016/j.ccr.2004.03.001. DOI
Miller J. S., Gatteschi D.. Molecule-based magnets themed issue No. 6. Chem. Soc. Rev. 2011;40:3065. doi: 10.1039/c1cs90019f. PubMed DOI
Saber M. R., Dunbar K. R.. Ligands effects on the magnetic anisotropy of tetrahedral cobalt complexes. Chem. Commun. 2014;50(82):12266–12269. doi: 10.1039/C4CC05724D. PubMed DOI
Zadrozny J. M., Telser J., Long J. R.. Slow magnetic relaxation in the tetrahedral cobalt(II) complexes [Co(EPh)4]2–EOS.S.Slow magnetic relaxation in the tetrahedral cobalt(II) complexes [Co(EPh)4]2–. Polyhedron. 2013;64:209–217. doi: 10.1016/j.poly.2013.04.008. DOI
Vaidya S., Shukla P., Tripathi S., Rivière E., Mallah T., Rajaraman G., Shanmugam M.. Substituted versus Naked Thiourea Ligand Containing Pseudotetrahedral Cobalt(II) Complexes: A Comparative Study on Its Magnetization Relaxation Dynamics Phenomenon. Inorg. Chem. 2018;57(6):3371–3386. doi: 10.1021/acs.inorgchem.8b00160. PubMed DOI
Shao F., Cahier B., Riviere E., Guillot R., Guihery N., Campbell V. E., Mallah T.. Structural Dependence of the Ising-type Magnetic Anisotropy and of the Relaxation Time in Mononuclear Trigonal Bipyramidal Co(II) Single Molecule Magnets. Inorg. Chem. 2017;56(3):1104–1111. doi: 10.1021/acs.inorgchem.6b01966. PubMed DOI
Nemec I., Herchel R., Svoboda I., Boca R., Travnicek Z.. Large and negative magnetic anisotropy in pentacoordinate mononuclear Ni(II) Schiff base complexes. Dalton Trans. 2015;44(20):9551–9560. doi: 10.1039/C5DT00600G. PubMed DOI
Goodwin C. A. P., Ortu F., Reta D., Chilton N. F., Mills D. P.. Molecular magnetic hysteresis at 60 K in dysprosocenium. Nature. 2017;548:439–441. doi: 10.1038/nature23447. PubMed DOI
Guo F.-S., Day B. M., Chen Y.-C., Tong M.-L., Mansikkamäki A., Layfield R. A.. Magnetic hysteresis up to 80 K in a dysprosium metallocene single-molecule magnet. Science. 2018;362(6421):1400–1403. doi: 10.1126/science.aav0652. PubMed DOI
Emerson-King J., Gransbury G. K., Atkinson B. E., Blackmore W. J. A., Whitehead G. F. S., Chilton N. F., Mills D. P.. Soft magnetic hysteresis in a dysprosium amide–alkene complex up to 100 K. Nature. 2025;643:125–129. doi: 10.1038/s41586-025-09138-0. PubMed DOI PMC
Regueiro-Figueroa M., Lima L. M., Blanco V., Esteban-Gomez D., de Blas A., Rodriguez-Blas T., Delgado R., Platas-Iglesias C.. Reasons behind the relative abundances of heptacoordinate complexes along the late first-row transition metal series. Inorg. Chem. 2014;53(24):12859–12869. doi: 10.1021/ic501869y. PubMed DOI
Drahoš B., Herchel R., Trávníček Z.. Structural and magnetic properties of heptacoordinated MnII complexes containing a 15-membered pyridine-based macrocycle and halido/pseudohalido axial coligands. RSC Adv. 2016;6(41):34674–34684. doi: 10.1039/C6RA03754B. DOI
Bar A. K., Pichon C., Gogoi N., Duhayon C., Ramasesha S., Sutter J.-P.. Single-ion magnet behaviour of heptacoordinated Fe(ii) complexes: On the importance of supramolecular organization. Chem. Commun. 2015;51(17):3616–3619. doi: 10.1039/C4CC10182K. PubMed DOI
Bar A. K., Gogoi N., Pichon C., Goli V. M. L. D. P., Thlijeni M., Duhayon C., Suaud N., Guihéry N., Barra A.-L., Ramasesha S.. et al. Pentagonal Bipyramid FeII Complexes: Robust Ising-Spin Units towards Heteropolynuclear Nanomagnets. Chem. - Eur. J. 2017;23(18):4380–4396. doi: 10.1002/chem.201605549. PubMed DOI
Shao D., Zhang S. L., Zhao X. H., Wang X. Y.. Spin canting, metamagnetism, and single-chain magnetic behaviour in a cyano-bridged homospin iron(II) compound. Chem. Commun. 2015;51(21):4360–4363. doi: 10.1039/C4CC10003D. PubMed DOI
Shao D., Zhao X.-H., Zhang S.-L., Wu D.-Q., Wei X.-Q., Wang X.-Y.. Structural and magnetic tuning from a field-induced single-ion magnet to a single-chain magnet by anions. Inorg. Chem. Front. 2015;2(9):846–853. doi: 10.1039/C5QI00089K. DOI
Drahoš B., Herchel B., Trávníček Z.. Single-Chain Magnet Based on 1D Polymeric Azido-Bridged Seven-Coordinate Fe(II) Complex with a Pyridine-Based Macrocyclic Ligand. Inorg. Chem. 2018;57(20):12718–12726. doi: 10.1021/acs.inorgchem.8b01798. PubMed DOI
Ruamps R., Batchelor L. J., Maurice R., Gogoi N., Jiménez-Lozano P., Guihéry N., de Graaf C., Barra A.-L., Sutter J.-P., Mallah T.. Origin of the Magnetic Anisotropy in Heptacoordinate NiII and CoII Complexes. Chem. - Eur. J. 2013;19(3):950–956. doi: 10.1002/chem.201202492. PubMed DOI
Huang X.-C., Zhou C., Shao D., Wang X.-Y.. Field-Induced Slow Magnetic Relaxation in Cobalt(II) Compounds with Pentagonal Bipyramid Geometry. Inorg. Chem. 2014;53(24):12671–12673. doi: 10.1021/ic502006s. PubMed DOI
Shao D., Zhang S. L., Shi L., Zhang Y. Q., Wang X. Y.. Probing the Effect of Axial Ligands on Easy-Plane Anisotropy of Pentagonal-Bipyramidal Cobalt(II) Single-Ion Magnets. Inorg. Chem. 2016;55:10859–10869. doi: 10.1021/acs.inorgchem.6b00854. PubMed DOI
Shao D., Shi L., Zhang S.-L., Zhao X.-H., Wu D.-Q., Wei X.-Q., Wang X.-Y.. Syntheses, structures, and magnetic properties of three new chain compounds based on a pentagonal bipyramidal Co(ii) building block. CrystEngcomm. 2016;18(22):4150–4157. doi: 10.1039/C5CE02594J. DOI
Gogoi N., Thlijeni M., Duhayon C., Sutter J.-P.. Heptacoordinated Nickel(II) as an Ising-Type Anisotropic Building Unit: Illustration with a Pentanuclear [(NiL)3{W(CN)8}2] Complex. Inorg. Chem. 2013;52(5):2283–2285. doi: 10.1021/ic3027368. PubMed DOI
Drahoš B., Herchel R., Trávníček Z.. Structural, Magnetic, and Redox Diversity of First-Row Transition Metal Complexes of a Pyridine-Based Macrocycle: Well-Marked Trends Supported by Theoretical DFT Calculations. Inorg. Chem. 2015;54(7):3352–3369. doi: 10.1021/ic503054m. PubMed DOI
Deng Y.-F., Yao B., Zhan P.-Z., Gan D., Zhang Y.-Z., Dunbar K. R.. Synthesis and magnetic studies of pentagonal bipyramidal metal complexes of Fe, Co and Ni. Dalton Trans. 2019;48(10):3243–3248. doi: 10.1039/C8DT05074K. PubMed DOI
Pichon C., Elrez B., Béreau V., Duhayon C., Sutter J.-P.. From Heptacoordinated CrIII Complexes with Cyanide or Isothiocyanate Apical Groups to 1D Heterometallic Assemblages with All-Pentagonal-Bipyramid Coordination Geometries. Eur. J. Inorg. Chem. 2018;2018:340–348. doi: 10.1002/ejic.201700845. DOI
Mironov V. S., Bazhenova T. A., Manakin Y. V., Lyssenko K. A., Talantsev A. D., Yagubskii E. B.. A new Mo(iv) complex with the pentadentate (N3O2) Schiff-base ligand: The first non-cyanide pentagonal-bipyramidal paramagnetic 4d complex. Dalton Trans. 2017;46(41):14083–14087. doi: 10.1039/C7DT02912H. PubMed DOI
Manakin Y. V., Mironov V. S., Bazhenova T. A., Lyssenko K. A., Gilmutdinov I. F., Bikbaev K. S., Masitov A. A., Yagubskii E. B.. (Et4N)[MoIII(DAPBH)Cl2], the first pentagonal-bipyramidal Mo(iii) complex with a N3O2-type Schiff-base ligand: Manifestation of unquenched orbital momentum and Ising-type magnetic anisotropy. Chem. Commun. 2018;54(72):10084–10087. doi: 10.1039/C8CC06038J. PubMed DOI
McMillion N. D., Bruch Q. J., Chen C.-H., Hasanayn F., Miller A. J. M.. Synthesis and bonding analysis of pentagonal bipyramidal rhenium carboxamide oxo complexes. Dalton Trans. 2023;52(41):15115–15123. doi: 10.1039/D3DT02617E. PubMed DOI
Manakin Y. V., Mironov V. S., Bazhenova T. A., Yakushev I. A., Gilmutdinov I. F., Simonov S. V., Yagubskii E. B.. (Et4N)[WIII(DAPBH)(CN)2], the first pentagonal-bipyramidal W(iii) complex with unquenched orbital angular momentum: A novel Ising-type magnetic building block for single-molecule magnets. Chem. Commun. 2023;59(5):643–646. doi: 10.1039/D2CC05998C. PubMed DOI
Mironov V. S., Bazhenova T. A., Manakin Y. V., Yagubskii E. B.. Pentagonal-bipyramidal 4d and 5d complexes with unquenched orbital angular momentum as a unique platform for advanced single-molecule magnets: Current state and perspectives. Dalton Trans. 2023;52(3):509–539. doi: 10.1039/D2DT02954E. PubMed DOI
Comba P., Rajaraman G., Sarkar A., Velmurugan G.. What controls the magnetic anisotropy in heptacoordinate high-spin cobalt(II) complexes? A theoretical perspective. Dalton Trans. 2022;51(13):5175–5183. doi: 10.1039/D1DT03903B. PubMed DOI
Drahoš B., Herchel R., Trávníček Z.. Impact of Halogenido Coligands on Magnetic Anisotropy in Seven-Coordinate Co(II) Complexes. Inorg. Chem. 2017;56(9):5076–5088. doi: 10.1021/acs.inorgchem.7b00235. PubMed DOI
Dey M., Dutta S., Sarma B., Deka R. C., Gogoi N.. Modulation of the coordination environment: A convenient approach to tailor magnetic anisotropy in seven coordinate Co(ii) complexes. Chem. Commun. 2016;52:753–756. doi: 10.1039/C5CC07397A. PubMed DOI
Kopotkov V. A., Korchagin D. V., Sasnovskaya V. D., Gilmutdinov I. F., Yagubskii E. B.. A Series of Field-Induced Single-Ion Magnets Based on the Seven-Coordinate Co(II) Complexes with the Pentadentate (N3O2) H2dapsc Ligand. Magnetochemistry. 2019;5(4):58. doi: 10.3390/magnetochemistry5040058. DOI
Mondal A., Wu S. -Q., Sato O., Konar S.. Effect of Axial Ligands on Easy-Axis Anisotropy and Field-Induced Slow Magnetic Relaxation in Heptacoordinated Fe II Complexes. Chem. - Eur. J. 2020;26(21):4780–4789. doi: 10.1002/chem.201905166. PubMed DOI
Dey M., Mudoi P. P., Choudhury A., Sarma B., Gogoi N.. Deciphering the influence of structural distortions on the uniaxial magnetic anisotropy of pentagonal bipyramidal Ni(ii) complexes. Chem. Commun. 2019;55(77):11547–11550. doi: 10.1039/C9CC05032A. PubMed DOI
Drahoš B., Herchel R.. Effective tuning of magnetic anisotropy in distorted pentagonal bipyramidal Ni(ii) complexes via substitution of axial coligands. Dalton Trans. 2022;51(47):18033–18044. doi: 10.1039/D2DT02867K. PubMed DOI
Antal P., Drahoš B., Herchel R., Trávníček Z.. Structure and Magnetism of Seven-Coordinate FeIII, FeII, CoII and NiII Complexes Containing a Heptadentate 15-Membered Pyridine-Based Macrocyclic Ligand. Eur. J. Inorg. Chem. 2018;2018(38):4286–4297. doi: 10.1002/ejic.201800769. DOI
Antal P., Drahoš B., Herchel R., Trávníček Z.. Late First-Row Transition-Metal Complexes Containing a 2-Pyridylmethyl Pendant-Armed 15-Membered Macrocyclic Ligand. Field-Induced Slow Magnetic Relaxation in a Seven-Coordinate Cobalt(II) Compound. Inorg. Chem. 2016;55(12):5957–5972. doi: 10.1021/acs.inorgchem.6b00415. PubMed DOI
Drahoš B., Císařová I., Laguta O., Santana V. T., Neugebauer P., Herchel R.. Structural, magnetic, redox and theoretical characterization of seven-coordinate first-row transition metal complexes with amacrocyclic ligand containing two benzimidazolyl N-pendant arms. Dalton Trans. 2020;49(14):4425–4440. doi: 10.1039/D0DT00166J. PubMed DOI
Platas-Iglesias C., Vaiana L., Esteban-Gómez D., Avecilla F., Real J. A., de Blas A., Rodríguez-Blas T.. Electronic Structure Study of Seven-Coordinate First-Row Transition Metal Complexes Derived from 1,10-Diaza-15-crown-5: A Successful Marriage of Theory with Experiment. Inorg. Chem. 2005;44(26):9704–9713. doi: 10.1021/ic051119h. PubMed DOI
Vaiana L., Regueiro-Figueroa M., Mato-Iglesias M., Platas-Iglesias C., Esteban-Gómez D., de Blas A., Rodríguez-Blas T.. Seven-Coordination versus Six-Coordination in Divalent First-Row Transition-Metal Complexes Derived from 1,10-Diaza-15-crown-5. Inorg. Chem. 2007;46(20):8271–8282. doi: 10.1021/ic7008946. PubMed DOI
Drahoš B., Kotek J., Hermann P., Lukeš I., Tóth E.. Mn2+ Complexes with Pyridine-Containing 15-Membered Macrocycles: Thermodynamic, Kinetic, Crystallographic, and 1H/17O Relaxation Studies. Inorg. Chem. 2010;49(7):3224–3238. doi: 10.1021/ic9020756. PubMed DOI
Polášek M., Šedinová M., Kotek J., Vander Elst L., Muller R. N., Hermann P., Lukeš I.. Pyridine-N-oxide Analogues of DOTA and Their Gadolinium(III) Complexes Endowed with a Fast Water Exchange on the Square-Antiprismatic Isomer. Inorg. Chem. 2009;48:455–465. doi: 10.1021/ic801596v. PubMed DOI
Chilton N. F., Anderson R. P., Turner L. D., Soncini A., Murray K. S.. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013;34:1164–1175. doi: 10.1002/jcc.23234. PubMed DOI
Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H.. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI
Macrae C. F., Bruno I. J., Chisholm J. A., Edgington P. R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P. A.. Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI
Neese F., Wennmohs F., Becker U., Riplinger C.. The ORCA quantum chemistry program package. J. Chem. Phys. 2020;152(22):224108. doi: 10.1063/5.0004608. PubMed DOI
Neese F.. Software update: The ORCA program systemVersion 5.0, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022;12(5):e1606. doi: 10.1002/wcms.1606. DOI
Neese F.. Software update: The ORCA program systemversion 6.0, WIREs Comput. Mol. Sci. 2025;15(2):e70019. doi: 10.1002/wcms.70019. DOI
Macrae C. F., Sovago I., Cottrell S. J., Galek P. T. A., McCabe P., Pidcock E., Platings M., Shields G. P., Stevens J. S., Towler M., Wood P. A.. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020;53:226–235. doi: 10.1107/S1600576719014092. PubMed DOI PMC
Jorge F. E., Canal Neto A., Camiletti G. G., Machado S. F.. Contracted Gaussian basis sets for Douglas–Kroll–Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties. J. Chem. Phys. 2009;130(6):064108. doi: 10.1063/1.3072360. PubMed DOI
Pritchard B. P., Altarawy D., Didier B., Gibson T. D., Windus T. L.. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019;59(11):4814–4820. doi: 10.1021/acs.jcim.9b00725. PubMed DOI
Stoychev G. L., Auer A. A., Neese F.. Automatic generation of auxiliary basis sets. J. Chem. Theory Comput. 2017;13:554. doi: 10.1021/acs.jctc.6b01041. PubMed DOI
Nakajima T., Hirao K.. The Douglas–Kroll–Hess Approach. Chem. Rev. 2012;112:385–402. doi: 10.1021/cr200040s. PubMed DOI
Malmqvist P. A., Roos B. O.. The CASSCF state interaction method. Chem. Phys. Lett. 1989;155:189–194. doi: 10.1016/0009-2614(89)85347-3. DOI
Angeli C., Cimiraglia R., Evangelisti S., Leininger T., Malrieu J.-P.. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001;114:10252–10264. doi: 10.1063/1.1361246. DOI
Angeli C., Cimiraglia R., Malrieu J.-P.. N-electron valence state perturbation theory: A fast implementation of the strongly contracted variant. Chem. Phys. Lett. 2001;350:297–305. doi: 10.1016/S0009-2614(01)01303-3. DOI
Angeli C., Cimiraglia R., Malrieu J.-P.. n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 2002;117:9138–9153. doi: 10.1063/1.1515317. DOI
Angeli C., Borini S., Cestari M., Cimiraglia R.. A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach. J. Chem. Phys. 2004;121:4043–4049. doi: 10.1063/1.1778711. PubMed DOI
Angeli C., Bories B., Cavallini A., Cimiraglia R.. Third-order multireference perturbation theory: The n-electron valence state perturbation-theory approach. J. Chem. Phys. 2006;124:054108. doi: 10.1063/1.2148946. PubMed DOI
Ganyushin D., Neese F.. First-principles calculations of zero-field splitting parameters. J. Chem. Phys. 2006;125(2):024103. doi: 10.1063/1.2213976. PubMed DOI
Neese F.. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J. Chem. Phys. 2005;122:034107. doi: 10.1063/1.1829047. PubMed DOI
Maurice R., Bastardis R., De Graaf C., Suaud N., Mallah T., Guihéry N.. Universal theoretical approach to extract anisotropic spin hamiltonians. J. Chem. Theory Comput. 2009;5(11):2977–2984. doi: 10.1021/ct900326e. PubMed DOI
Atanasov, M. ; Ganyushin, D. ; Sivalingam, K. ; Neese, F. . Mingos, D. M. P. ; Day, P. ; Dahl, J. P. . In Molecular Electronic Structures of Transition Metal Complexes II; Springer: Berlin Heidelberg, Berlin, Heidelberg, 2012; pp. 149–220
Singh S. K., Eng J., Atanasov M., Neese F.. Covalency and chemical bonding in transition metal complexes: An ab initio based ligand field perspective. Coord. Chem. Rev. 2017;344:2–25. doi: 10.1016/j.ccr.2017.03.018. DOI
Zhurko, G. A. Chemcraft - Graphical Program For Visualization Of Quantum Chemistry Computations; Chemcraft: Ivanovo, Russia, 2005, https://chemcraftprog.com.
Yanai T., Tew D. P., Handy N. C.. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP. Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI
Caldeweyher E., Ehlert S., Hansen A., Neugebauer H., Spicher S., Bannwarth C., Grimme S.. A Generally Applicable Atomic-Charge Dependent London Dispersion Correction. J. Chem. Phys. 2019;150(15):154122. doi: 10.1063/1.5090222. PubMed DOI
Neese F., Wennmohs F., Hansen A., Becker U.. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 2009;356(1–3):98. doi: 10.1016/j.chemphys.2008.10.036. DOI
AIMAll software, version 19.10.12. https://aim.tkgristmill.com.
Bader, R. F. W. Atoms in Molecules: A Quantum Theory. In International Series of Monographs on Chemistry; Oxford University Press: Oxford, NY, 1994.
Matta, C. F. ; Boyd, R. . The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design; Wiley, 2007.
Ananyev I. V., Bokach N. A., Kukushkin V. Y.. Structure-directing sulfur.metal noncovalent semicoordination bonding. Acta Crystallogr., Sect. b: struct. Sci., Cryst. Eng. Mater. 2020;76(3):436–449. doi: 10.1107/S2052520620005685. PubMed DOI
Matito E., Poater J., Sola ` M., Duran M., Salvador P.. Comparison of the AIM Delocalization Index and the Mayer and Fuzzy Atom Bond Orders. J. Phys. Chem. A. 2005;109(43):9904–9910. doi: 10.1021/jp0538464. PubMed DOI
Alvarez S.. Polyhedra in (inorganic) chemistry. Dalton Trans. 2005;13:2209–2233. doi: 10.1039/b503582c. PubMed DOI
Casanova D., Alemany P., Bofill J. M., Alvarez S.. Shape and Symmetry of Heptacoordinate Transition-Metal Complexes: Structural Trends. Chem. - Eur. J. 2003;9(6):1281–1295. doi: 10.1002/chem.200390145. PubMed DOI
Boča, R. Theoretical Foundations of Molecular Magnetism; Elsevier, 1999.
Gomez-Coca S., Urtizberea A., Cremades E., Alonso P. J., Camon A., Ruiz E., Luis F.. Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy. Nat. Commun. 2014;5:4300. doi: 10.1038/ncomms5300. PubMed DOI