Pentagonal Bipyramidal First-Row Transition Metal Complexes with Macrocyclic Ligand Containing Two Pyridine-N-Oxide Pendant Arms: Structural, Magnetic, and Theoretical Studies

. 2025 Nov 24 ; 64 (46) : 22683-22697. [epub] 20251110

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41208578

A heptadentate 15-membered pyridine-based macrocyclic ligand containing two pyridine-N-oxide pendant arms (L4 = 3,12-bis((pyridine-1-oxide-2-yl)methyl)-6,9-dioxa-3,12,18-triazabicyclo[12.3.1]octadeca-1(18),14,16-triene) was synthesized together with its first-row transition metal complexes with the general formula [M(L4)](ClO4)2·1DMF (MII = Mn (1), Fe (2), Co (3), and Ni (4); DMF = N,N'-dimethylformamide), which were thoroughly investigated. According to the obtained X-ray crystal structures, all complexes possess axially compressed pentagonal bipyramidal geometry with a coordination number of 7 for 1-3 or 5 + 2 for Ni(II) complex 4 with a large Jahn-Teller distortion. Fe(II), Co(II), and Ni(II) complexes 2, 3, and 4 show pronounced magnetic anisotropy (D = 4.47, 30.10, -7.58 cm-1, respectively). The magnetic properties of the studied complexes were supported by theoretical calculations, which corresponded very well to the experimental data for magnetic anisotropy. Furthermore, complex 3 showed a field-induced single-molecule magnet behavior described best by the combination of direct (DHm = 145 K-1s-1) and Raman (C = 0.58 K-ns-1 for n = 5.76) relaxation processes. Magneto-structural correlation for Fe(II)/Co(II)/Ni(II) complexes with L4 and previously studied structurally similar ligands revealed a significant impact of the coordination ability of the functional group in pendant arms on the final magnetic anisotropy (π-acceptors appear to be more suitable).

Zobrazit více v PubMed

Sutter J.-P., Béreau V., Jubault V., Bretosh K., Pichon C., Duhayon C.. Magnetic anisotropy of transition metal and lanthanide ions in pentagonal bipyramidal geometry. Chem. Soc. Rev. 2022;51(8):3280–3313. doi: 10.1039/D2CS00028H. PubMed DOI

Boča R.. Zero-field splitting in metal complexes. Coord. Chem. Rev. 2004;248(9):757–815. doi: 10.1016/j.ccr.2004.03.001. DOI

Miller J. S., Gatteschi D.. Molecule-based magnets themed issue No. 6. Chem. Soc. Rev. 2011;40:3065. doi: 10.1039/c1cs90019f. PubMed DOI

Saber M. R., Dunbar K. R.. Ligands effects on the magnetic anisotropy of tetrahedral cobalt complexes. Chem. Commun. 2014;50(82):12266–12269. doi: 10.1039/C4CC05724D. PubMed DOI

Zadrozny J. M., Telser J., Long J. R.. Slow magnetic relaxation in the tetrahedral cobalt­(II) complexes [Co­(EPh)­4]­2–EOS.S.Slow magnetic relaxation in the tetrahedral cobalt­(II) complexes [Co­(EPh)­4]­2–. Polyhedron. 2013;64:209–217. doi: 10.1016/j.poly.2013.04.008. DOI

Vaidya S., Shukla P., Tripathi S., Rivière E., Mallah T., Rajaraman G., Shanmugam M.. Substituted versus Naked Thiourea Ligand Containing Pseudotetrahedral Cobalt­(II) Complexes: A Comparative Study on Its Magnetization Relaxation Dynamics Phenomenon. Inorg. Chem. 2018;57(6):3371–3386. doi: 10.1021/acs.inorgchem.8b00160. PubMed DOI

Shao F., Cahier B., Riviere E., Guillot R., Guihery N., Campbell V. E., Mallah T.. Structural Dependence of the Ising-type Magnetic Anisotropy and of the Relaxation Time in Mononuclear Trigonal Bipyramidal Co­(II) Single Molecule Magnets. Inorg. Chem. 2017;56(3):1104–1111. doi: 10.1021/acs.inorgchem.6b01966. PubMed DOI

Nemec I., Herchel R., Svoboda I., Boca R., Travnicek Z.. Large and negative magnetic anisotropy in pentacoordinate mononuclear Ni­(II) Schiff base complexes. Dalton Trans. 2015;44(20):9551–9560. doi: 10.1039/C5DT00600G. PubMed DOI

Goodwin C. A. P., Ortu F., Reta D., Chilton N. F., Mills D. P.. Molecular magnetic hysteresis at 60 K in dysprosocenium. Nature. 2017;548:439–441. doi: 10.1038/nature23447. PubMed DOI

Guo F.-S., Day B. M., Chen Y.-C., Tong M.-L., Mansikkamäki A., Layfield R. A.. Magnetic hysteresis up to 80 K in a dysprosium metallocene single-molecule magnet. Science. 2018;362(6421):1400–1403. doi: 10.1126/science.aav0652. PubMed DOI

Emerson-King J., Gransbury G. K., Atkinson B. E., Blackmore W. J. A., Whitehead G. F. S., Chilton N. F., Mills D. P.. Soft magnetic hysteresis in a dysprosium amide–alkene complex up to 100 K. Nature. 2025;643:125–129. doi: 10.1038/s41586-025-09138-0. PubMed DOI PMC

Regueiro-Figueroa M., Lima L. M., Blanco V., Esteban-Gomez D., de Blas A., Rodriguez-Blas T., Delgado R., Platas-Iglesias C.. Reasons behind the relative abundances of heptacoordinate complexes along the late first-row transition metal series. Inorg. Chem. 2014;53(24):12859–12869. doi: 10.1021/ic501869y. PubMed DOI

Drahoš B., Herchel R., Trávníček Z.. Structural and magnetic properties of heptacoordinated MnII complexes containing a 15-membered pyridine-based macrocycle and halido/pseudohalido axial coligands. RSC Adv. 2016;6(41):34674–34684. doi: 10.1039/C6RA03754B. DOI

Bar A. K., Pichon C., Gogoi N., Duhayon C., Ramasesha S., Sutter J.-P.. Single-ion magnet behaviour of heptacoordinated Fe­(ii) complexes: On the importance of supramolecular organization. Chem. Commun. 2015;51(17):3616–3619. doi: 10.1039/C4CC10182K. PubMed DOI

Bar A. K., Gogoi N., Pichon C., Goli V. M. L. D. P., Thlijeni M., Duhayon C., Suaud N., Guihéry N., Barra A.-L., Ramasesha S.. et al. Pentagonal Bipyramid FeII Complexes: Robust Ising-Spin Units towards Heteropolynuclear Nanomagnets. Chem. - Eur. J. 2017;23(18):4380–4396. doi: 10.1002/chem.201605549. PubMed DOI

Shao D., Zhang S. L., Zhao X. H., Wang X. Y.. Spin canting, metamagnetism, and single-chain magnetic behaviour in a cyano-bridged homospin iron­(II) compound. Chem. Commun. 2015;51(21):4360–4363. doi: 10.1039/C4CC10003D. PubMed DOI

Shao D., Zhao X.-H., Zhang S.-L., Wu D.-Q., Wei X.-Q., Wang X.-Y.. Structural and magnetic tuning from a field-induced single-ion magnet to a single-chain magnet by anions. Inorg. Chem. Front. 2015;2(9):846–853. doi: 10.1039/C5QI00089K. DOI

Drahoš B., Herchel B., Trávníček Z.. Single-Chain Magnet Based on 1D Polymeric Azido-Bridged Seven-Coordinate Fe­(II) Complex with a Pyridine-Based Macrocyclic Ligand. Inorg. Chem. 2018;57(20):12718–12726. doi: 10.1021/acs.inorgchem.8b01798. PubMed DOI

Ruamps R., Batchelor L. J., Maurice R., Gogoi N., Jiménez-Lozano P., Guihéry N., de Graaf C., Barra A.-L., Sutter J.-P., Mallah T.. Origin of the Magnetic Anisotropy in Heptacoordinate NiII and CoII Complexes. Chem. - Eur. J. 2013;19(3):950–956. doi: 10.1002/chem.201202492. PubMed DOI

Huang X.-C., Zhou C., Shao D., Wang X.-Y.. Field-Induced Slow Magnetic Relaxation in Cobalt­(II) Compounds with Pentagonal Bipyramid Geometry. Inorg. Chem. 2014;53(24):12671–12673. doi: 10.1021/ic502006s. PubMed DOI

Shao D., Zhang S. L., Shi L., Zhang Y. Q., Wang X. Y.. Probing the Effect of Axial Ligands on Easy-Plane Anisotropy of Pentagonal-Bipyramidal Cobalt­(II) Single-Ion Magnets. Inorg. Chem. 2016;55:10859–10869. doi: 10.1021/acs.inorgchem.6b00854. PubMed DOI

Shao D., Shi L., Zhang S.-L., Zhao X.-H., Wu D.-Q., Wei X.-Q., Wang X.-Y.. Syntheses, structures, and magnetic properties of three new chain compounds based on a pentagonal bipyramidal Co­(ii) building block. CrystEngcomm. 2016;18(22):4150–4157. doi: 10.1039/C5CE02594J. DOI

Gogoi N., Thlijeni M., Duhayon C., Sutter J.-P.. Heptacoordinated Nickel­(II) as an Ising-Type Anisotropic Building Unit: Illustration with a Pentanuclear [(NiL)3{W­(CN)8}2] Complex. Inorg. Chem. 2013;52(5):2283–2285. doi: 10.1021/ic3027368. PubMed DOI

Drahoš B., Herchel R., Trávníček Z.. Structural, Magnetic, and Redox Diversity of First-Row Transition Metal Complexes of a Pyridine-Based Macrocycle: Well-Marked Trends Supported by Theoretical DFT Calculations. Inorg. Chem. 2015;54(7):3352–3369. doi: 10.1021/ic503054m. PubMed DOI

Deng Y.-F., Yao B., Zhan P.-Z., Gan D., Zhang Y.-Z., Dunbar K. R.. Synthesis and magnetic studies of pentagonal bipyramidal metal complexes of Fe, Co and Ni. Dalton Trans. 2019;48(10):3243–3248. doi: 10.1039/C8DT05074K. PubMed DOI

Pichon C., Elrez B., Béreau V., Duhayon C., Sutter J.-P.. From Heptacoordinated CrIII Complexes with Cyanide or Isothiocyanate Apical Groups to 1D Heterometallic Assemblages with All-Pentagonal-Bipyramid Coordination Geometries. Eur. J. Inorg. Chem. 2018;2018:340–348. doi: 10.1002/ejic.201700845. DOI

Mironov V. S., Bazhenova T. A., Manakin Y. V., Lyssenko K. A., Talantsev A. D., Yagubskii E. B.. A new Mo­(iv) complex with the pentadentate (N3O2) Schiff-base ligand: The first non-cyanide pentagonal-bipyramidal paramagnetic 4d complex. Dalton Trans. 2017;46(41):14083–14087. doi: 10.1039/C7DT02912H. PubMed DOI

Manakin Y. V., Mironov V. S., Bazhenova T. A., Lyssenko K. A., Gilmutdinov I. F., Bikbaev K. S., Masitov A. A., Yagubskii E. B.. (Et4N)­[MoIII(DAPBH)­Cl2], the first pentagonal-bipyramidal Mo­(iii) complex with a N3O2-type Schiff-base ligand: Manifestation of unquenched orbital momentum and Ising-type magnetic anisotropy. Chem. Commun. 2018;54(72):10084–10087. doi: 10.1039/C8CC06038J. PubMed DOI

McMillion N. D., Bruch Q. J., Chen C.-H., Hasanayn F., Miller A. J. M.. Synthesis and bonding analysis of pentagonal bipyramidal rhenium carboxamide oxo complexes. Dalton Trans. 2023;52(41):15115–15123. doi: 10.1039/D3DT02617E. PubMed DOI

Manakin Y. V., Mironov V. S., Bazhenova T. A., Yakushev I. A., Gilmutdinov I. F., Simonov S. V., Yagubskii E. B.. (Et4N)­[WIII(DAPBH)­(CN)2], the first pentagonal-bipyramidal W­(iii) complex with unquenched orbital angular momentum: A novel Ising-type magnetic building block for single-molecule magnets. Chem. Commun. 2023;59(5):643–646. doi: 10.1039/D2CC05998C. PubMed DOI

Mironov V. S., Bazhenova T. A., Manakin Y. V., Yagubskii E. B.. Pentagonal-bipyramidal 4d and 5d complexes with unquenched orbital angular momentum as a unique platform for advanced single-molecule magnets: Current state and perspectives. Dalton Trans. 2023;52(3):509–539. doi: 10.1039/D2DT02954E. PubMed DOI

Comba P., Rajaraman G., Sarkar A., Velmurugan G.. What controls the magnetic anisotropy in heptacoordinate high-spin cobalt­(II) complexes? A theoretical perspective. Dalton Trans. 2022;51(13):5175–5183. doi: 10.1039/D1DT03903B. PubMed DOI

Drahoš B., Herchel R., Trávníček Z.. Impact of Halogenido Coligands on Magnetic Anisotropy in Seven-Coordinate Co­(II) Complexes. Inorg. Chem. 2017;56(9):5076–5088. doi: 10.1021/acs.inorgchem.7b00235. PubMed DOI

Dey M., Dutta S., Sarma B., Deka R. C., Gogoi N.. Modulation of the coordination environment: A convenient approach to tailor magnetic anisotropy in seven coordinate Co­(ii) complexes. Chem. Commun. 2016;52:753–756. doi: 10.1039/C5CC07397A. PubMed DOI

Kopotkov V. A., Korchagin D. V., Sasnovskaya V. D., Gilmutdinov I. F., Yagubskii E. B.. A Series of Field-Induced Single-Ion Magnets Based on the Seven-Coordinate Co­(II) Complexes with the Pentadentate (N3O2) H2dapsc Ligand. Magnetochemistry. 2019;5(4):58. doi: 10.3390/magnetochemistry5040058. DOI

Mondal A., Wu S. -Q., Sato O., Konar S.. Effect of Axial Ligands on Easy-Axis Anisotropy and Field-Induced Slow Magnetic Relaxation in Heptacoordinated Fe II Complexes. Chem. - Eur. J. 2020;26(21):4780–4789. doi: 10.1002/chem.201905166. PubMed DOI

Dey M., Mudoi P. P., Choudhury A., Sarma B., Gogoi N.. Deciphering the influence of structural distortions on the uniaxial magnetic anisotropy of pentagonal bipyramidal Ni­(ii) complexes. Chem. Commun. 2019;55(77):11547–11550. doi: 10.1039/C9CC05032A. PubMed DOI

Drahoš B., Herchel R.. Effective tuning of magnetic anisotropy in distorted pentagonal bipyramidal Ni­(ii) complexes via substitution of axial coligands. Dalton Trans. 2022;51(47):18033–18044. doi: 10.1039/D2DT02867K. PubMed DOI

Antal P., Drahoš B., Herchel R., Trávníček Z.. Structure and Magnetism of Seven-Coordinate FeIII, FeII, CoII and NiII Complexes Containing a Heptadentate 15-Membered Pyridine-Based Macrocyclic Ligand. Eur. J. Inorg. Chem. 2018;2018(38):4286–4297. doi: 10.1002/ejic.201800769. DOI

Antal P., Drahoš B., Herchel R., Trávníček Z.. Late First-Row Transition-Metal Complexes Containing a 2-Pyridylmethyl Pendant-Armed 15-Membered Macrocyclic Ligand. Field-Induced Slow Magnetic Relaxation in a Seven-Coordinate Cobalt­(II) Compound. Inorg. Chem. 2016;55(12):5957–5972. doi: 10.1021/acs.inorgchem.6b00415. PubMed DOI

Drahoš B., Císařová I., Laguta O., Santana V. T., Neugebauer P., Herchel R.. Structural, magnetic, redox and theoretical characterization of seven-coordinate first-row transition metal complexes with amacrocyclic ligand containing two benzimidazolyl N-pendant arms. Dalton Trans. 2020;49(14):4425–4440. doi: 10.1039/D0DT00166J. PubMed DOI

Platas-Iglesias C., Vaiana L., Esteban-Gómez D., Avecilla F., Real J. A., de Blas A., Rodríguez-Blas T.. Electronic Structure Study of Seven-Coordinate First-Row Transition Metal Complexes Derived from 1,10-Diaza-15-crown-5: A Successful Marriage of Theory with Experiment. Inorg. Chem. 2005;44(26):9704–9713. doi: 10.1021/ic051119h. PubMed DOI

Vaiana L., Regueiro-Figueroa M., Mato-Iglesias M., Platas-Iglesias C., Esteban-Gómez D., de Blas A., Rodríguez-Blas T.. Seven-Coordination versus Six-Coordination in Divalent First-Row Transition-Metal Complexes Derived from 1,10-Diaza-15-crown-5. Inorg. Chem. 2007;46(20):8271–8282. doi: 10.1021/ic7008946. PubMed DOI

Drahoš B., Kotek J., Hermann P., Lukeš I., Tóth E.. Mn2+ Complexes with Pyridine-Containing 15-Membered Macrocycles: Thermodynamic, Kinetic, Crystallographic, and 1H/17O Relaxation Studies. Inorg. Chem. 2010;49(7):3224–3238. doi: 10.1021/ic9020756. PubMed DOI

Polášek M., Šedinová M., Kotek J., Vander Elst L., Muller R. N., Hermann P., Lukeš I.. Pyridine-N-oxide Analogues of DOTA and Their Gadolinium­(III) Complexes Endowed with a Fast Water Exchange on the Square-Antiprismatic Isomer. Inorg. Chem. 2009;48:455–465. doi: 10.1021/ic801596v. PubMed DOI

Chilton N. F., Anderson R. P., Turner L. D., Soncini A., Murray K. S.. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013;34:1164–1175. doi: 10.1002/jcc.23234. PubMed DOI

Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H.. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI

Macrae C. F., Bruno I. J., Chisholm J. A., Edgington P. R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P. A.. Mercury CSD 2.0–new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI

Neese F., Wennmohs F., Becker U., Riplinger C.. The ORCA quantum chemistry program package. J. Chem. Phys. 2020;152(22):224108. doi: 10.1063/5.0004608. PubMed DOI

Neese F.. Software update: The ORCA program systemVersion 5.0, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022;12(5):e1606. doi: 10.1002/wcms.1606. DOI

Neese F.. Software update: The ORCA program systemversion 6.0, WIREs Comput. Mol. Sci. 2025;15(2):e70019. doi: 10.1002/wcms.70019. DOI

Macrae C. F., Sovago I., Cottrell S. J., Galek P. T. A., McCabe P., Pidcock E., Platings M., Shields G. P., Stevens J. S., Towler M., Wood P. A.. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020;53:226–235. doi: 10.1107/S1600576719014092. PubMed DOI PMC

Jorge F. E., Canal Neto A., Camiletti G. G., Machado S. F.. Contracted Gaussian basis sets for Douglas–Kroll–Hess calculations: Estimating scalar relativistic effects of some atomic and molecular properties. J. Chem. Phys. 2009;130(6):064108. doi: 10.1063/1.3072360. PubMed DOI

Pritchard B. P., Altarawy D., Didier B., Gibson T. D., Windus T. L.. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019;59(11):4814–4820. doi: 10.1021/acs.jcim.9b00725. PubMed DOI

Stoychev G. L., Auer A. A., Neese F.. Automatic generation of auxiliary basis sets. J. Chem. Theory Comput. 2017;13:554. doi: 10.1021/acs.jctc.6b01041. PubMed DOI

Nakajima T., Hirao K.. The Douglas–Kroll–Hess Approach. Chem. Rev. 2012;112:385–402. doi: 10.1021/cr200040s. PubMed DOI

Malmqvist P. A., Roos B. O.. The CASSCF state interaction method. Chem. Phys. Lett. 1989;155:189–194. doi: 10.1016/0009-2614(89)85347-3. DOI

Angeli C., Cimiraglia R., Evangelisti S., Leininger T., Malrieu J.-P.. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001;114:10252–10264. doi: 10.1063/1.1361246. DOI

Angeli C., Cimiraglia R., Malrieu J.-P.. N-electron valence state perturbation theory: A fast implementation of the strongly contracted variant. Chem. Phys. Lett. 2001;350:297–305. doi: 10.1016/S0009-2614(01)01303-3. DOI

Angeli C., Cimiraglia R., Malrieu J.-P.. n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 2002;117:9138–9153. doi: 10.1063/1.1515317. DOI

Angeli C., Borini S., Cestari M., Cimiraglia R.. A quasidegenerate formulation of the second order n-electron valence state perturbation theory approach. J. Chem. Phys. 2004;121:4043–4049. doi: 10.1063/1.1778711. PubMed DOI

Angeli C., Bories B., Cavallini A., Cimiraglia R.. Third-order multireference perturbation theory: The n-electron valence state perturbation-theory approach. J. Chem. Phys. 2006;124:054108. doi: 10.1063/1.2148946. PubMed DOI

Ganyushin D., Neese F.. First-principles calculations of zero-field splitting parameters. J. Chem. Phys. 2006;125(2):024103. doi: 10.1063/1.2213976. PubMed DOI

Neese F.. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J. Chem. Phys. 2005;122:034107. doi: 10.1063/1.1829047. PubMed DOI

Maurice R., Bastardis R., De Graaf C., Suaud N., Mallah T., Guihéry N.. Universal theoretical approach to extract anisotropic spin hamiltonians. J. Chem. Theory Comput. 2009;5(11):2977–2984. doi: 10.1021/ct900326e. PubMed DOI

Atanasov, M. ; Ganyushin, D. ; Sivalingam, K. ; Neese, F. . Mingos, D. M. P. ; Day, P. ; Dahl, J. P. . In Molecular Electronic Structures of Transition Metal Complexes II; Springer: Berlin Heidelberg, Berlin, Heidelberg, 2012; pp. 149–220

Singh S. K., Eng J., Atanasov M., Neese F.. Covalency and chemical bonding in transition metal complexes: An ab initio based ligand field perspective. Coord. Chem. Rev. 2017;344:2–25. doi: 10.1016/j.ccr.2017.03.018. DOI

Zhurko, G. A. Chemcraft - Graphical Program For Visualization Of Quantum Chemistry Computations; Chemcraft: Ivanovo, Russia, 2005, https://chemcraftprog.com.

Yanai T., Tew D. P., Handy N. C.. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP. Chem. Phys. Lett. 2004;393:51–57. doi: 10.1016/j.cplett.2004.06.011. DOI

Caldeweyher E., Ehlert S., Hansen A., Neugebauer H., Spicher S., Bannwarth C., Grimme S.. A Generally Applicable Atomic-Charge Dependent London Dispersion Correction. J. Chem. Phys. 2019;150(15):154122. doi: 10.1063/1.5090222. PubMed DOI

Neese F., Wennmohs F., Hansen A., Becker U.. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 2009;356(1–3):98. doi: 10.1016/j.chemphys.2008.10.036. DOI

AIMAll software, version 19.10.12. https://aim.tkgristmill.com.

Bader, R. F. W. Atoms in Molecules: A Quantum Theory. In International Series of Monographs on Chemistry; Oxford University Press: Oxford, NY, 1994.

Matta, C. F. ; Boyd, R. . The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design; Wiley, 2007.

Ananyev I. V., Bokach N. A., Kukushkin V. Y.. Structure-directing sulfur.metal noncovalent semicoordination bonding. Acta Crystallogr., Sect. b: struct. Sci., Cryst. Eng. Mater. 2020;76(3):436–449. doi: 10.1107/S2052520620005685. PubMed DOI

Matito E., Poater J., Sola ` M., Duran M., Salvador P.. Comparison of the AIM Delocalization Index and the Mayer and Fuzzy Atom Bond Orders. J. Phys. Chem. A. 2005;109(43):9904–9910. doi: 10.1021/jp0538464. PubMed DOI

Alvarez S.. Polyhedra in (inorganic) chemistry. Dalton Trans. 2005;13:2209–2233. doi: 10.1039/b503582c. PubMed DOI

Casanova D., Alemany P., Bofill J. M., Alvarez S.. Shape and Symmetry of Heptacoordinate Transition-Metal Complexes: Structural Trends. Chem. - Eur. J. 2003;9(6):1281–1295. doi: 10.1002/chem.200390145. PubMed DOI

Boča, R. Theoretical Foundations of Molecular Magnetism; Elsevier, 1999.

Gomez-Coca S., Urtizberea A., Cremades E., Alonso P. J., Camon A., Ruiz E., Luis F.. Origin of slow magnetic relaxation in Kramers ions with non-uniaxial anisotropy. Nat. Commun. 2014;5:4300. doi: 10.1038/ncomms5300. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...