One-Step Biomimetic Synthesis of the Alkaloids Karachine, Valachine, and Sinometumine E
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41231154
PubMed Central
PMC12670697
DOI
10.1021/acs.orglett.5c04172
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
An efficient one-step synthesis of the protoberberine alkaloids karachine, valachine, and sinometumine E is described. This transformation relies on the biosynthetic hypothesis featuring vinylogous aldol, Michael, and Mannich addition reactions working in tandem under mild non-enzymatic conditions. The method employs renewable substrates in an atom-economical and operationally simple manner, allowing for a multigram-scale synthesis. The structure of karachine was confirmed crystallographically and showed the intramolecular n→π* interaction that enabled stereoselective nucleophilic addition to the carbonyl group.
Zobrazit více v PubMed
Bentley K. W.. β-Phenylethylamines and the Isoquinoline Alkaloids. Nat. Prod. Rep. 2005;22(2):249–268. doi: 10.1039/B316108K. PubMed DOI
Yang X., Miao X., Dai L., Guo X., Jenis J., Zhang J., Shang X.. Isolation, Biological Activity, and Synthesis of Isoquinoline Alkaloids. Nat. Prod. Rep. 2024;41(11):1652–1722. doi: 10.1039/D4NP00023D. PubMed DOI
Grycová L., Dostál J., Marek R.. Quaternary Protoberberine Alkaloids. Phytochemistry. 2007;68(2):150–175. doi: 10.1016/j.phytochem.2006.10.004. PubMed DOI
Chrzanowska M., Grajewska A., Rozwadowska M. D.. Asymmetric Synthesis of Isoquinoline Alkaloids: 2004–2015. Chem. Rev. 2016;116(19):12369–12465. doi: 10.1021/acs.chemrev.6b00315. PubMed DOI
Kim A. N., Ngamnithiporn A., Du E., Stoltz B. M.. Recent Advances in the Total Synthesis of the Tetrahydroisoquinoline Alkaloids (2002–2020) Chem. Rev. 2023;123(15):9447–9496. doi: 10.1021/acs.chemrev.3c00054. PubMed DOI PMC
Truax N. J., Romo D.. Bridging the Gap between Natural Product Synthesis and Drug Discovery. Nat. Prod. Rep. 2020;37(11):1436–1453. doi: 10.1039/D0NP00048E. PubMed DOI PMC
Hayashi Y.. Time and Pot Economy in Total Synthesis. Acc. Chem. Res. 2021;54(6):1385–1398. doi: 10.1021/acs.accounts.0c00803. PubMed DOI
Wright B. A., Sarpong R.. Molecular Complexity as a Driving Force for the Advancement of Organic Synthesis. Nat. Rev. Chem. 2024;8(10):776–792. doi: 10.1038/s41570-024-00645-8. PubMed DOI PMC
Young I. S., Baran P. S.. Protecting-Group-Free Synthesis as an Opportunity for Invention. Nat. Chem. 2009;1(3):193–205. doi: 10.1038/nchem.216. PubMed DOI
Saicic R. N.. Protecting Group-Free Syntheses of Natural Products and Biologically Active Compounds. Tetrahedron. 2014;70(44):8183–8218. doi: 10.1016/j.tet.2014.06.025. DOI
Hui C., Chen F., Pu F., Xu J.. Innovation in Protecting-Group-Free Natural Product Synthesis. Nat. Rev. Chem. 2019;3(2):85–107. doi: 10.1038/s41570-018-0071-1. DOI
Fernandes R. A., Kumar P., Choudhary P.. Advances in Catalytic and Protecting-Group-Free Total Synthesis of Natural Products: A Recent Update. Chem. Commun. 2020;56(61):8569–8590. doi: 10.1039/D0CC02659J. PubMed DOI
Kuttruff C. A., Eastgate M. D., Baran P. S.. Natural Product Synthesis in the Age of Scalability. Nat. Prod. Rep. 2014;31(4):419–432. doi: 10.1039/C3NP70090A. PubMed DOI
Kühlborn J., Groß J., Opatz T.. Making Natural Products from Renewable Feedstocks: Back to the Roots? Nat. Prod. Rep. 2020;37(3):380–424. doi: 10.1039/C9NP00040B. PubMed DOI
Bao R., Zhang H., Tang Y.. Biomimetic Synthesis of Natural Products: A Journey To Learn, To Mimic, and To Be Better. Acc. Chem. Res. 2021;54(19):3720–3733. doi: 10.1021/acs.accounts.1c00459. PubMed DOI
Fay N., Kouklovsky C., De La Torre A.. Natural Product Synthesis: The Endless Quest for Unreachable Perfection. ACS Org. Inorg. Au. 2023;3(6):350–363. doi: 10.1021/acsorginorgau.3c00040. PubMed DOI PMC
Chen L., Chen P., Jia Y.. Bioinspired Total Synthesis of Natural Products. Acc. Chem. Res. 2024;57(24):3524–3540. doi: 10.1021/acs.accounts.4c00654. PubMed DOI
Vieira De Castro T., Huang D. M., Sumby C. J., Lawrence A. L., George J. H.. A Bioinspired, One-Step Total Synthesis of Peshawaraquinone. Chem. Sci. 2023;14(4):950–954. doi: 10.1039/D2SC05377B. PubMed DOI PMC
Barnes G. L., Hong A. Y., Vanderwal C. D.. A Synthesis of Alstonlarsine A via Alstolucines B and F Demonstrates the Chemical Feasibility of a Proposed Biogenesis. Angew. Chem., Int. Ed. 2023;62(4):e202215098. doi: 10.1002/anie.202215098. PubMed DOI PMC
Wiese L., Kolbe S. M., Weber M., Ludlow M., Christmann M.. Synthesis and Biological Evaluation of Cleistocaltone A, an Inhibitor of Respiratory Syncytial Virus (RSV) Chem. Sci. 2024;15(26):10121–10125. doi: 10.1039/D4SC01897D. PubMed DOI PMC
Artzy J. Y., Tantillo D. J., Trauner D. H.. Biomimetic Synthesis of Azorellolide via Cyclopropylcarbinyl Cation Chemistry. J. Am. Chem. Soc. 2025;147(1):78–83. doi: 10.1021/jacs.4c14664. PubMed DOI PMC
Huang Q., Li N.-P., Lin K., Wang J.-M., Wu Z.-L., Wang W.-J., Cao J.-Q., Wang Z., Tu Z.-C., Cheng M.-J., Ye W.-C., Wang L.. Discovery and Biomimetic Syntheses of Phloroglucinol-Monoterpene-Triketone Hybrids from Chamelaucium uncinatum with Hypoglycemic Activity. Org. Lett. 2025;27(24):6264–6270. doi: 10.1021/acs.orglett.5c01159. PubMed DOI
Blasko G., Murugesan N., Freyer A. J., Shamma M., Ansari A. A., Atta-ur-Rahman. Karachine: An Unusual Protoberberine Alkaloid. J. Am. Chem. Soc. 1982;104(7):2039–2041. doi: 10.1021/ja00371a049. DOI
Firdous S., Freyer A. J., Shamma M., Atta-ur-Rahman, Urzúa A.. Bridged Protoberberine Alkaloids. J. Chem. Soc., Chem. Commun. 1984:1371–1373. doi: 10.1039/C39840001371. DOI
Shen X., Yan Y., Li X., Ma J., Xie F., Zhou S., Feng Y., Yin T.. Isoquinoline Alkaloids from Thalictrum glandulosissimum and Their Network Analysis of Chemotaxonomic Value. Biochem. Syst. Ecol. 2022;101:104390. doi: 10.1016/j.bse.2022.104390. DOI
Bi R., Yang X.-N., Zhou H.-F., Peng L.-Y., Liu J.-X., Zhao Q.-S.. Eleven Undescribed Alkaloids from the Rhizomes of Sinomenium acutum and Their IDO1 and TDO Inhibitory Activities. Phytochemistry. 2022;200:113244. doi: 10.1016/j.phytochem.2022.113244. PubMed DOI
Wang Y., Wang S., Wang Y., Gao P., Wang L., Wang Q., Zhang Y., Liu K., Xia Q., Tu P.. The Natural Compound Sinometumine E Derived from Corydalis Decumbens Promotes Angiogenesis by Regulating HIF-1/ VEGF Pathway in Vivo and in Vitro. Biomed. Pharmacother. 2024;178:117113. doi: 10.1016/j.biopha.2024.117113. PubMed DOI
Li Z., Wang Y., Xu Q., Ma J., Li X., Yan J., Tian Y., Wen Y., Chen T.. Berberine and Health Outcomes: An Umbrella Review. Phytother. Res. 2023;37(5):2051–2066. doi: 10.1002/ptr.7806. PubMed DOI
Stevens R. V., Pruitt J. R.. On the Annulation of Δ2-Tetrahydropyridines. An Expeditious Total Synthesis of the Protoberberine Alkaloid Karachine. J. Chem. Soc., Chem. Commun. 1983:1425–1425. doi: 10.1039/C39830001425. DOI
Paterson I., Price L. G.. O-Silylated Dienolates in Organic Synthesis: γ-Selective Alkylation of Unsaturated Carbonyl Compounds by 1,5-Dithienium Fluoroborate. Tetrahedron Lett. 1981;22(29):2833–2836. doi: 10.1016/S0040-4039(01)90565-9. DOI
Wan C. S. K., Weedon A. C., Wong D. F.. Stereoselective and Regioselective Thermal and Photochemical Preparation of Siloxy Dienes. J. Org. Chem. 1986;51(17):3335–3341. doi: 10.1021/jo00367a015. DOI
Yeagley A. A., Lowder M. A., Chruma J. J.. Tandem C–C Bond-Forming Processes: Interception of the Pd-Catalyzed Decarboxylative Allylation of Allyl Diphenylglycinate Imines with Activated Olefins. Org. Lett. 2009;11(17):4022–4025. doi: 10.1021/ol901745x. PubMed DOI
Su S., Porco J. A.. 1,2-Dihydroisoquinolines as Templates for Cascade Reactions To Access Isoquinoline Alkaloid Frameworks. Org. Lett. 2007;9(24):4983–4986. doi: 10.1021/ol702176h. PubMed DOI
Yoshida T., Muraki S., Kawamura H., Komatsu A.. Minor Constituents of Japanese Ho-Leaf Oil: The Structures of (+)-Tagetonol and (−)-trans-Hotrienol. Agric. Biol. Chem. 1969;33(3):343–352. doi: 10.1080/00021369.1969.10859320. DOI
Francisco C., Combaut G., Teste J., Prost M.. Eleganolone nouveau cetol diterpenique lineaire de la pheophycee Cystoseira elegans . Phytochemistry. 1978;17(5):1003–1004. doi: 10.1016/S0031-9422(00)88670-7. DOI
Berberine is mainly obtained from plant sources. Mesityl oxide is commonly produced by base-catalyzed dimerization of acetone (patent US 3002999 A). In turn, bioderived acetone is commercially available.
Huck C. J., Boyko Y. D., Sarlah D.. Dearomative Logic in Natural Product Total Synthesis. Nat. Prod. Rep. 2022;39(12):2231–2291. doi: 10.1039/D2NP00042C. PubMed DOI PMC
The reversible nucleophilic addition of the alcohol to the pyridine system of
Chen Y., Zhen Q., Meng F.-J., Yu P., Xu C.. Lone Pair−π Interactions in Organic Reactions. Chem. Rev. 2024;124(23):13370–13396. doi: 10.1021/acs.chemrev.4c00516. PubMed DOI