One-Step Biomimetic Synthesis of the Alkaloids Karachine, Valachine, and Sinometumine E

. 2025 Nov 28 ; 27 (47) : 13040-13044. [epub] 20251113

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41231154

An efficient one-step synthesis of the protoberberine alkaloids karachine, valachine, and sinometumine E is described. This transformation relies on the biosynthetic hypothesis featuring vinylogous aldol, Michael, and Mannich addition reactions working in tandem under mild non-enzymatic conditions. The method employs renewable substrates in an atom-economical and operationally simple manner, allowing for a multigram-scale synthesis. The structure of karachine was confirmed crystallographically and showed the intramolecular n→π* interaction that enabled stereoselective nucleophilic addition to the carbonyl group.

Zobrazit více v PubMed

Bentley K. W.. β-Phenylethylamines and the Isoquinoline Alkaloids. Nat. Prod. Rep. 2005;22(2):249–268. doi: 10.1039/B316108K. PubMed DOI

Yang X., Miao X., Dai L., Guo X., Jenis J., Zhang J., Shang X.. Isolation, Biological Activity, and Synthesis of Isoquinoline Alkaloids. Nat. Prod. Rep. 2024;41(11):1652–1722. doi: 10.1039/D4NP00023D. PubMed DOI

Grycová L., Dostál J., Marek R.. Quaternary Protoberberine Alkaloids. Phytochemistry. 2007;68(2):150–175. doi: 10.1016/j.phytochem.2006.10.004. PubMed DOI

Chrzanowska M., Grajewska A., Rozwadowska M. D.. Asymmetric Synthesis of Isoquinoline Alkaloids: 2004–2015. Chem. Rev. 2016;116(19):12369–12465. doi: 10.1021/acs.chemrev.6b00315. PubMed DOI

Kim A. N., Ngamnithiporn A., Du E., Stoltz B. M.. Recent Advances in the Total Synthesis of the Tetrahydroisoquinoline Alkaloids (2002–2020) Chem. Rev. 2023;123(15):9447–9496. doi: 10.1021/acs.chemrev.3c00054. PubMed DOI PMC

Truax N. J., Romo D.. Bridging the Gap between Natural Product Synthesis and Drug Discovery. Nat. Prod. Rep. 2020;37(11):1436–1453. doi: 10.1039/D0NP00048E. PubMed DOI PMC

Hayashi Y.. Time and Pot Economy in Total Synthesis. Acc. Chem. Res. 2021;54(6):1385–1398. doi: 10.1021/acs.accounts.0c00803. PubMed DOI

Wright B. A., Sarpong R.. Molecular Complexity as a Driving Force for the Advancement of Organic Synthesis. Nat. Rev. Chem. 2024;8(10):776–792. doi: 10.1038/s41570-024-00645-8. PubMed DOI PMC

Young I. S., Baran P. S.. Protecting-Group-Free Synthesis as an Opportunity for Invention. Nat. Chem. 2009;1(3):193–205. doi: 10.1038/nchem.216. PubMed DOI

Saicic R. N.. Protecting Group-Free Syntheses of Natural Products and Biologically Active Compounds. Tetrahedron. 2014;70(44):8183–8218. doi: 10.1016/j.tet.2014.06.025. DOI

Hui C., Chen F., Pu F., Xu J.. Innovation in Protecting-Group-Free Natural Product Synthesis. Nat. Rev. Chem. 2019;3(2):85–107. doi: 10.1038/s41570-018-0071-1. DOI

Fernandes R. A., Kumar P., Choudhary P.. Advances in Catalytic and Protecting-Group-Free Total Synthesis of Natural Products: A Recent Update. Chem. Commun. 2020;56(61):8569–8590. doi: 10.1039/D0CC02659J. PubMed DOI

Kuttruff C. A., Eastgate M. D., Baran P. S.. Natural Product Synthesis in the Age of Scalability. Nat. Prod. Rep. 2014;31(4):419–432. doi: 10.1039/C3NP70090A. PubMed DOI

Kühlborn J., Groß J., Opatz T.. Making Natural Products from Renewable Feedstocks: Back to the Roots? Nat. Prod. Rep. 2020;37(3):380–424. doi: 10.1039/C9NP00040B. PubMed DOI

Bao R., Zhang H., Tang Y.. Biomimetic Synthesis of Natural Products: A Journey To Learn, To Mimic, and To Be Better. Acc. Chem. Res. 2021;54(19):3720–3733. doi: 10.1021/acs.accounts.1c00459. PubMed DOI

Fay N., Kouklovsky C., De La Torre A.. Natural Product Synthesis: The Endless Quest for Unreachable Perfection. ACS Org. Inorg. Au. 2023;3(6):350–363. doi: 10.1021/acsorginorgau.3c00040. PubMed DOI PMC

Chen L., Chen P., Jia Y.. Bioinspired Total Synthesis of Natural Products. Acc. Chem. Res. 2024;57(24):3524–3540. doi: 10.1021/acs.accounts.4c00654. PubMed DOI

Vieira De Castro T., Huang D. M., Sumby C. J., Lawrence A. L., George J. H.. A Bioinspired, One-Step Total Synthesis of Peshawaraquinone. Chem. Sci. 2023;14(4):950–954. doi: 10.1039/D2SC05377B. PubMed DOI PMC

Barnes G. L., Hong A. Y., Vanderwal C. D.. A Synthesis of Alstonlarsine A via Alstolucines B and F Demonstrates the Chemical Feasibility of a Proposed Biogenesis. Angew. Chem., Int. Ed. 2023;62(4):e202215098. doi: 10.1002/anie.202215098. PubMed DOI PMC

Wiese L., Kolbe S. M., Weber M., Ludlow M., Christmann M.. Synthesis and Biological Evaluation of Cleistocaltone A, an Inhibitor of Respiratory Syncytial Virus (RSV) Chem. Sci. 2024;15(26):10121–10125. doi: 10.1039/D4SC01897D. PubMed DOI PMC

Artzy J. Y., Tantillo D. J., Trauner D. H.. Biomimetic Synthesis of Azorellolide via Cyclopropylcarbinyl Cation Chemistry. J. Am. Chem. Soc. 2025;147(1):78–83. doi: 10.1021/jacs.4c14664. PubMed DOI PMC

Huang Q., Li N.-P., Lin K., Wang J.-M., Wu Z.-L., Wang W.-J., Cao J.-Q., Wang Z., Tu Z.-C., Cheng M.-J., Ye W.-C., Wang L.. Discovery and Biomimetic Syntheses of Phloroglucinol-Monoterpene-Triketone Hybrids from Chamelaucium uncinatum with Hypoglycemic Activity. Org. Lett. 2025;27(24):6264–6270. doi: 10.1021/acs.orglett.5c01159. PubMed DOI

Blasko G., Murugesan N., Freyer A. J., Shamma M., Ansari A. A., Atta-ur-Rahman. Karachine: An Unusual Protoberberine Alkaloid. J. Am. Chem. Soc. 1982;104(7):2039–2041. doi: 10.1021/ja00371a049. DOI

Firdous S., Freyer A. J., Shamma M., Atta-ur-Rahman, Urzúa A.. Bridged Protoberberine Alkaloids. J. Chem. Soc., Chem. Commun. 1984:1371–1373. doi: 10.1039/C39840001371. DOI

Shen X., Yan Y., Li X., Ma J., Xie F., Zhou S., Feng Y., Yin T.. Isoquinoline Alkaloids from Thalictrum glandulosissimum and Their Network Analysis of Chemotaxonomic Value. Biochem. Syst. Ecol. 2022;101:104390. doi: 10.1016/j.bse.2022.104390. DOI

Bi R., Yang X.-N., Zhou H.-F., Peng L.-Y., Liu J.-X., Zhao Q.-S.. Eleven Undescribed Alkaloids from the Rhizomes of Sinomenium acutum and Their IDO1 and TDO Inhibitory Activities. Phytochemistry. 2022;200:113244. doi: 10.1016/j.phytochem.2022.113244. PubMed DOI

Wang Y., Wang S., Wang Y., Gao P., Wang L., Wang Q., Zhang Y., Liu K., Xia Q., Tu P.. The Natural Compound Sinometumine E Derived from Corydalis Decumbens Promotes Angiogenesis by Regulating HIF-1/ VEGF Pathway in Vivo and in Vitro. Biomed. Pharmacother. 2024;178:117113. doi: 10.1016/j.biopha.2024.117113. PubMed DOI

Li Z., Wang Y., Xu Q., Ma J., Li X., Yan J., Tian Y., Wen Y., Chen T.. Berberine and Health Outcomes: An Umbrella Review. Phytother. Res. 2023;37(5):2051–2066. doi: 10.1002/ptr.7806. PubMed DOI

Stevens R. V., Pruitt J. R.. On the Annulation of Δ2-Tetrahydropyridines. An Expeditious Total Synthesis of the Protoberberine Alkaloid Karachine. J. Chem. Soc., Chem. Commun. 1983:1425–1425. doi: 10.1039/C39830001425. DOI

Paterson I., Price L. G.. O-Silylated Dienolates in Organic Synthesis: γ-Selective Alkylation of Unsaturated Carbonyl Compounds by 1,5-Dithienium Fluoroborate. Tetrahedron Lett. 1981;22(29):2833–2836. doi: 10.1016/S0040-4039(01)90565-9. DOI

Wan C. S. K., Weedon A. C., Wong D. F.. Stereoselective and Regioselective Thermal and Photochemical Preparation of Siloxy Dienes. J. Org. Chem. 1986;51(17):3335–3341. doi: 10.1021/jo00367a015. DOI

Yeagley A. A., Lowder M. A., Chruma J. J.. Tandem C–C Bond-Forming Processes: Interception of the Pd-Catalyzed Decarboxylative Allylation of Allyl Diphenylglycinate Imines with Activated Olefins. Org. Lett. 2009;11(17):4022–4025. doi: 10.1021/ol901745x. PubMed DOI

Su S., Porco J. A.. 1,2-Dihydroisoquinolines as Templates for Cascade Reactions To Access Isoquinoline Alkaloid Frameworks. Org. Lett. 2007;9(24):4983–4986. doi: 10.1021/ol702176h. PubMed DOI

Yoshida T., Muraki S., Kawamura H., Komatsu A.. Minor Constituents of Japanese Ho-Leaf Oil: The Structures of (+)-Tagetonol and (−)-trans-Hotrienol. Agric. Biol. Chem. 1969;33(3):343–352. doi: 10.1080/00021369.1969.10859320. DOI

Francisco C., Combaut G., Teste J., Prost M.. Eleganolone nouveau cetol diterpenique lineaire de la pheophycee Cystoseira elegans . Phytochemistry. 1978;17(5):1003–1004. doi: 10.1016/S0031-9422(00)88670-7. DOI

Berberine is mainly obtained from plant sources. Mesityl oxide is commonly produced by base-catalyzed dimerization of acetone (patent US 3002999 A). In turn, bioderived acetone is commercially available.

Huck C. J., Boyko Y. D., Sarlah D.. Dearomative Logic in Natural Product Total Synthesis. Nat. Prod. Rep. 2022;39(12):2231–2291. doi: 10.1039/D2NP00042C. PubMed DOI PMC

The reversible nucleophilic addition of the alcohol to the pyridine system of

Chen Y., Zhen Q., Meng F.-J., Yu P., Xu C.. Lone Pair−π Interactions in Organic Reactions. Chem. Rev. 2024;124(23):13370–13396. doi: 10.1021/acs.chemrev.4c00516. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...