Oryzalin-induced polyploidy in Borago officinalis reveals cell-wall remodelling via immunofluorescence microscopy

. 2025 ; 16 () : 1676435. [epub] 20251104

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41262361

INTRODUCTION: Artificial polyploidisation is a powerful biotechnological approach for improving morphological and physiological traits in medicinal plants. We investigated the consequences of chemically induced whole-genome duplication in Borago officinalis L. METHODS: Tetraploidy was induced in vitro using oryzalin. Flow cytometry verified the establishment of mixoploid and stable tetraploid subclones. Selected tetraploids were evaluated for morphology, anatomy, and cellular features using light/confocal microscopy and immunofluorescence labelling of pectic epitopes (homogalacturonan and rhamnogalacturonan I). RESULTS: Relative to diploids, tetraploids displayed thicker, darker green leaves, increased trichome density, and a distinct growth habit. Microscopy showed significantly enlarged stomata with reduced density, expanded vascular tissues, and altered mesophyll organisation. Immunofluorescence revealed distinct patterns of cell-wall remodelling in tetraploid tissues. DISCUSSION: These findings illuminate the structural and histochemical consequences of genome-dosage changes in B. officinalis and highlight the potential of chemically induced polyploidy to enhance agronomic and pharmaceutical traits. The work provides a platform for future applications in plant metabolic engineering and molecular pharming.

Zobrazit více v PubMed

Abdollahi M. R., Chardoli Eshaghi Z., Majdi M. (2017). Improvement in androgenic response of borage (Borago officinalis L.) cultured anthers using antibrowning agents and picloram. Turk J. Biol. 41, 354–363. doi:  10.3906/biy-1606-49 DOI

Abdollahi M. R., Eshaghi Z. C., Seguí-Simarro J. M. (2021). “Haploid plant production in borage (Borago officinalis L.) by anther culture,” in Doubled haploid technology. Ed. Segui-Simarro J. M. (Springer US, New York, NY: ), 237–248. doi:  10.1007/978-1-0716-1331-3_15, PMID: PubMed DOI

Ahmadi B., Ebrahimzadeh H. (2020). PubMed DOI

Al-Mohammed Maher H. S., El-Kaaby Ekhlas A. J., Al-Anny Jenan A., Musa Abdul-kadhim J. (2014). Effect of salinity stress and mutagenic sodium azide on callus induction and plant regeneration of borage (Borago officinalis)

Balao F., Herrera J., Talavera S. (2011). Phenotypic consequences of polyploidy and genome size at the microevolutionary scale: a multivariate morphological approach. New Phytol. 192, 256–265. doi:  10.1111/j.1469-8137.2011.03787.x, PMID: PubMed DOI

Barceló-Anguiano M., Holbrook N. M., Hormaza J. I., Losada J. M. (2021). Changes in ploidy affect vascular allometry and hydraulic function in PubMed DOI

Becker F. W., Oberlander K. C., Trávníček P., Dreyer L. L. (2022). Inconsistent expression of the gigas effect in polyploid PubMed DOI

Bharadwaj D. N. (2015). “Polyploidy in crop improvement and evolution,” in Plant biology and biotechnology. Eds. Bahadur B., Rajam M.V., Sahijram L., Krishnamurthy K. V. (Springer India, New Delhi: ), 619–638. doi:  10.1007/978-81-322-2286-6_24 DOI

Bidhendi A. J., Geitmann A. (2016). Relating the mechanics of the primary plant cell wall to morphogenesis. EXBOTJ 67, 449–461. doi:  10.1093/jxb/erv535, PMID: PubMed DOI

Blasco M., Badenes M. L., Naval M. D. M. (2015). Colchicine-induced polyploidy in loquat (Eriobotrya japonica (Thunb.) Lindl.). Plant Cell Tiss Organ Cult 120, 453–461. doi:  10.1007/s11240-014-0612-3 DOI

Byrne M. C., Nelson C. J., Randall D. D. (1981). Ploidy effects on anatomy and gas exchange of tall fescue leaves. Plant Physiol. 68, 891–893. doi:  10.1104/pp.68.4.891, PMID: PubMed DOI PMC

Castro S., Loureiro J., Santos C., Ater M., Ayensa G., Navarro L. (2007). Distribution of flower morphs, ploidy level and sexual reproduction of the invasive weed oxalis pes-caprae in the western area of the mediterranean region. Ann. Bot. 99, 507–517. doi:  10.1093/aob/mcl273, PMID: PubMed DOI PMC

Christensen B., Sriskandarajah S., Serek M., Müller R. (2008). DOI

Clausen M. H., Willats W. G. T., Knox J. P. (2003). Synthetic methyl hexagalacturonate hapten inhibitors of anti-homogalacturonan monoclonal antibodies LM7, JIM5 and JIM7. Carbohydr. Res. 338, 1797–1800. doi:  10.1016/S0008-6215(03)00272-6, PMID: PubMed DOI

Comai L. (2005). The advantages and disadvantages of being polyploid. Nat. Rev. Genet. 6, 836–846. doi:  10.1038/nrg1711, PMID: PubMed DOI

Corneillie S., De Storme N., Van Acker R., Fangel J. U., De Bruyne M., De Rycke R., et al. (2019). Polyploidy affects plant growth and alters cell wall composition. Plant Physiol. 179, 74–87. doi:  10.1104/pp.18.00967, PMID: PubMed DOI PMC

Cosgrove D. J. (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861. doi:  10.1038/nrm1746, PMID: PubMed DOI

Cosgrove D. J. (2016). Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. EXBOTJ 67, 463–476. doi:  10.1093/jxb/erv511, PMID: PubMed DOI

Darley C. P., Forrester A. M., McQueen-Mason S. J. (2001). The molecular basis of plant cell wall extension. Plant Mol. Biol. 47, 179–195. doi:  10.1023/A:1010687600670, PMID: PubMed DOI

Dhooghe E., Van Laere K., Eeckhaut T., Leus L., Van Huylenbroeck J. (2011). Mitotic chromosome doubling of plant tissues in DOI

Doležel J., Greilhuber J., Lucretti S., Meister A., Lysák M. A., Nardi L., et al. (1998). Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann. Bot. 82, 17–26. doi:  10.1093/oxfordjournals.aob.a010312 DOI

Doležel J., Greilhuber J., Suda J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2, 2233–2244. doi:  10.1038/nprot.2007.310, PMID: PubMed DOI

Dudits D., Török K., Cseri A., Paul K., Nagy A. V., Nagy B., et al. (2016). Response of organ structure and physiology to autotetraploidization in early development of energy willow PubMed DOI PMC

Eshaghi Z. C., Abdollahi M. R., Moosavi S. S., Deljou A., Seguí-Simarro J. M. (2015). Induction of androgenesis and production of haploid embryos in anther cultures of borage (Borago officinalis L.). Plant Cell Tiss Organ Cult 122, 321–329. doi:  10.1007/s11240-015-0768-5 DOI

Feng H., Wang M., Cong R., Dai S. (2017). Colchicine- and trifluralin-mediated polyploidization of DOI

Fernandes H. P., Choi Y. H., Vrieling K., De Bresser M., Sewalt B., Tonolo F. (2023). Cultivar-dependent phenotypic and chemotypic responses of drug-type Cannabis sativa L. @ to polyploidization. Front. Plant Sci. 14. doi:  10.3389/fpls.2023.1233191, PMID: PubMed DOI PMC

Fonollá A., Hormaza J. I., Losada J. M. (2023). Foliar pectins and physiology of diploid and autotetraploid mango genotypes under water stress. Plants 12, 3738. doi:  10.3390/plants12213738, PMID: PubMed DOI PMC

Greplová M., Polzerová H., Domkářová J. (2009). Intra- and inter-specific crosses of DOI

Gupta N., Bhattacharya S., Dutta A., Cusimamani E. F., Milella L., Leuner O. (2024). DOI

Hamill S., Smith M., Dodd W. (1992). DOI

Hias N., Leus L., Davey M. W., Vanderzande S., Van Huylenbroeck J., Keulemans J. (2017). Effect of polyploidization on morphology in two apple (Malus × domestica) genotypes. Hortic. Sci. 44, 55–63. doi:  10.17221/7/2016-HORTSCI DOI

Homaidan Shmeit Y., Fernandez E., Novy P., Kloucek P., Orosz M., Kokoska L. (2020). Autopolyploidy effect on morphological variation and essential oil content in Thymus vulgaris L. Scientia Hortic. 263, 109095. doi:  10.1016/j.scienta.2019.109095 DOI

Horn W. (2002). “Breeding methods and breeding research,” in Breeding for ornamentals: classical and molecular approaches. Ed. Vainstein A. (Springer Netherlands, Dordrecht: ), 47–83. doi:  10.1007/978-94-017-0956-9_4 DOI

Hoveida Z. S., Abdollahi M. R., Mirzaie-Asl A., Moosavi S. S., Seguí-Simarro J. M. (2017). Production of doubled haploid plants from anther cultures of borage (Borago officinalis L.) by the application of chemical and physical stress. Plant Cell Tiss Organ Cult 130, 369–378. doi:  10.1007/s11240-017-1233-4 DOI

Iannicelli J., Guariniello J., Tossi V. E., Regalado J. J., Di Ciaccio L., Van Baren C. M., et al. (2020). The “polyploid effect” in the breeding of aromatic and medicinal species. Scientia Hortic. 260, 108854. doi:  10.1016/j.scienta.2019.108854 DOI

Jones L., Seymour G. B., Knox J. P. (1997). Localization of pectic galactan in tomato cell walls using a monoclonal antibody specific to (1[-&gt];4)-β-D-galactan. Plant Physiol. 113, 1405–1412. doi:  10.1104/pp.113.4.1405, PMID: PubMed DOI PMC

Kaensaksiri T., Soontornchainaksaeng P., Soonthornchareonnon N., Prathanturarug S. (2011). DOI

Karabourniotis G., Liakopoulos G., Nikolopoulos D., Bresta P. (2020). Protective and defensive roles of non-glandular trichomes against multiple stresses: structure–function coordination. J. For. Res. 31, 1–12. doi:  10.1007/s11676-019-01034-4 DOI

Knipp G., Honermeier B. (2002). Investigations about the establishment of organogenesis as

Knox J. P., Linstead P. J., Cooper J. P., Roberts K. (1991). Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J. 1, 317–326. doi:  10.1046/j.1365-313X.1991.t01-9-00999.x, PMID: PubMed DOI

Krejčíková J., Sudová R., Lučanová M., Trávníček P., Urfus T., Vít P., et al. (2013). High ploidy diversity and distinct patterns of cytotype distribution in a widespread species of Oxalis in the Greater Cape Floristic Region. Ann. Bot. 111, 641–649. doi:  10.1093/aob/mct030, PMID: PubMed DOI PMC

Lakshman Chandra D. (2017). Breeding of medicinal and aromatic plants-an overview. Int. J. Bot. Res. 7, 25–34.

Lavania U. C., Srivastava S., Lavania S., Basu S., Misra N. K., Mukai Y. (2012). Autopolyploidy differentially influences body size in plants, but facilitates enhanced accumulation of secondary metabolites, causing increased cytosine methylation. Plant J. 71, 539–549. doi:  10.1111/j.1365-313X.2012.05006.x, PMID: PubMed DOI

Leng Z., Liu K., Wang C., Qi F., Zhang C., Li D., et al. (2023). A Comparative Analysis of Major Cell Wall Components and Associated Gene Expression in Autotetraploid and Its Donor Diploid Rice (Oryza sativa L.) under Blast and Salt Stress Conditions. Plants 12, 3976. doi:  10.3390/plants12233976, PMID: PubMed DOI PMC

Levin D. A. (2002). The role of chromosomal change in plant evolution (New York, NY: Oxford University Press; ). doi:  10.1093/oso/9780195138597.001.0001 DOI

Li Q.-Q., Zhang J., Liu J.-H., Yu B.-Y. (2018). Morphological and chemical studies of artificial Andrographis paniculata polyploids. Chin. J. Natural Medicines 16, 81–89. doi:  10.1016/S1875-5364(18)30033-5, PMID: PubMed DOI

Lin X., Zhou Y., Zhang J., Lu X., Zhang F., Shen Q., et al. (2011). Enhancement of artemisinin content in tetraploid PubMed DOI

Liu G., Li Z., Bao M. (2007). Colchicine-induced chromosome doubling in Platanus acerifolia and its effect on plant morphology. Euphytica 157, 145–154. doi:  10.1007/s10681-007-9406-6 DOI

Madani H., Escrich A., Hosseini B., Sanchez-Muñoz R., Khojasteh A., Palazon J. (2021). Effect of polyploidy induction on natural metabolite production in medicinal plants. Biomolecules 11, 899. doi:  10.3390/biom11060899, PMID: PubMed DOI PMC

Mahmud E., Zhu H., Kaseb M. O., Sajjad M. Z., He N., Lu X., et al. (2024). Polyploidization impact on plant architecture of watermelon (Citrullus lanatus). Horticulturae 10, 569. doi:  10.3390/horticulturae10060569 DOI

Majdi M., Karimzadeh G., Malboobi M. A., Omidbaigi R., Mirzaghaderi G. (2010). Induction of tetraploidy to feverfew (Tanacetum parthenium schulz-bip.): morphological, physiological, cytological, and phytochemical changes. horts 45, 16–21. doi:  10.21273/HORTSCI.45.1.16 DOI

Marks R. A., Delgado P., Makonya G. M., Cooper K., VanBuren R., Farrant J. M. (2024). Higher order polyploids exhibit enhanced desiccation tolerance in the grass PubMed DOI PMC

Meru G. M. (2012). Polypoidy and its implications in plant breeding. Plant Breed. 21st century.

Meyer E. M., Touchell D. H., Ranney T. G. (2009). DOI

Mishra B. K., Pathak S., Sharma A., Trivedi P. K., Shukla S. (2010). Modulated gene expression in newly synthesized auto-tetraploid of Papaver somniferum L. South Afr. J. Bot. 76, 447–452. doi:  10.1016/j.sajb.2010.02.090 DOI

Mo L., Chen J., Chen F., Xu Q., Tong Z., Huang H., et al. (2020). Induction and characterization of polyploids from seeds of Rhododendron fortunei Lindl. J. Integr. Agric. 19, 2016–2026. doi:  10.1016/S2095-3119(20)63210-5 DOI

Moghbel N., Borujeni M. K., Bernard F. (2015). Colchicine effect on the DNA content and stomata size of Glycyrrhiza glabra var.glandulifera and Carthamus tinctorius L. cultured in PubMed DOI PMC

Mohnen D. (2008). Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11, 266–277. doi:  10.1016/j.pbi.2008.03.006, PMID: PubMed DOI

Mtileni M. P., Venter N., Glennon K. L. (2021). Ploidy differences affect leaf functional traits, but not water stress responses in a mountain endemic plant population. South Afr. J. Bot. 138, 76–83. doi:  10.1016/j.sajb.2020.11.029 DOI

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15, 473–497. doi:  10.1111/j.1399-3054.1962.tb08052.x DOI

Nasser E. A., Wadi K. D., Ibrahim M. M. (2019). Effect of phenylalnine concentration on Rosmarinic and Salicylic acid in the callus culture of Borago officinalis L. Plant Arch. 19, 4149–4154.

Navrátilová B., Švécarová M., Bednář J., Ondřej V. (2021). DOI

Neenu M. G., Aswathi A., Prasath D. (2024). Synthetic polyploidy in spice crops: A review. Crop Sci. 64, 2–23. doi:  10.1002/csc2.21134 DOI

Niazian M. (2019). Application of genetics and biotechnology for improving medicinal plants. Planta 249, 953–973. doi:  10.1007/s00425-019-03099-1, PMID: PubMed DOI

Niazian M., Nalousi A. M. (2020). Artificial polyploidy induction for improvement of ornamental and medicinal plants. Plant Cell Tiss Organ Cult 142, 447–469. doi:  10.1007/s11240-020-01888-1 DOI

Onoda Y., Westoby M., Adler P. B., Choong A. M. F., Clissold F. J., Cornelissen J. H. C., et al. (2011). Global patterns of leaf mechanical properties: Global patterns of leaf mechanical properties. Ecol. Lett. 14, 301–312. doi:  10.1111/j.1461-0248.2010.01582.x, PMID: PubMed DOI

Parsons J. L., Martin S. L., James T., Golenia G., Boudko E. A., Hepworth S. R. (2019). Polyploidization for the genetic improvement of cannabis sativa. Front. Plant Sci. 10. doi:  10.3389/fpls.2019.00476, PMID: PubMed DOI PMC

Pasternak T. (2025). Ascorbate regulates root development through auxin response in arabidopsis thaliana. IJPB 16, 74. doi:  10.3390/ijpb16030074 DOI

Peaucelle A., Braybrook S. A., Le Guillou L., Bron E., Kuhlemeier C., Höfte H. (2011). Pectin-induced changes in cell wall mechanics underlie organ initiation in arabidopsis. Curr. Biol. 21, 1720–1726. doi:  10.1016/j.cub.2011.08.057, PMID: PubMed DOI

Porturas L. (2018). The effect of genome duplication on the reproductive ecology of plants (Syracuse University; ). Available online at: https://surface.syr.edu/thesis/220 (Accessed May 22 2025).

Quinn J., Simon J. E., Janick J. (1989). Histology of zygotic and somatic embryogenesis in borage. J. Am. Soc. Hortic. Sci. 114, 516–520. doi:  10.21273/JASHS.114.3.516 DOI

Ræbild A., Anamthawat-Jónsson K., Egertsdotter U., Immanen J., Jensen A. M., Koutouleas A., et al. (2024). Polyploidy – A tool in adapting trees to future climate changes? A review of polyploidy in trees. For. Ecol. Manage. 560, 121767. doi:  10.1016/j.foreco.2024.121767 DOI

Ramsey J. (2011). Polyploidy and ecological adaptation in wild yarrow. Proc. Natl. Acad. Sci. U.S.A. 108, 7096–7101. doi:  10.1073/pnas.1016631108, PMID: PubMed DOI PMC

Ramsey J., Schemske D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 29, 467–501. doi:  10.1146/annurev.ecolsys.29.1.467 DOI

Regalado J. J., Carmona-Martín E., Querol V., Veléz C. G., Encina C. L., Pitta-Alvarez S. I. (2017). Production of compact petunias through polyploidization. Plant Cell Tiss Organ Cult 129, 61–71. doi:  10.1007/s11240-016-1156-5 DOI

Riastiwi I., Witjaksono W., Juniarti Siregar U., Ratnadewi D. (2024). Induction of Polyploidy in Dalbergia latifolia Roxb. using Oryzalin. JSM 53, 1889–1900. doi:  10.17576/jsm-2024-5308-13 DOI

Rose J. B., Kubba J., Tobutt K. R. (2000). Induction of tetraploidy in Buddleia globosa. Plant Cell Tissue Organ Culture 63, 121–125. doi:  10.1023/A:1006434803003 DOI

Rout G. R., Samantaray S., Das P. (2000). PubMed DOI

Sabzehzari M., Hoveidamanesh S., Modarresi M., Mohammadi V. (2020). Morphological, anatomical, physiological, and cytological studies in diploid and tetraploid plants of Ispaghul (Plantago ovata Forsk.). Genet. Resour Crop Evol. 67, 129–137. doi:  10.1007/s10722-019-00846-x DOI

Salma U., Kundu S., Mandal N. (2017). Artificial polyploidy in medicinal plants: Advancement in the last two decades and impending prospects. J. Crop Sci. Biotechnol. 20, 9–19. doi:  10.1007/s12892-016-0080-1 DOI

Sanaei-Hoveida Z., Mortazavian S. M. M., Norouzi M., Sadat-Noori S. A. (2024). Elevating morphology and essential oil in cumin genotypes through polyploidy induction. Scientia Hortic. 329, 113031. doi:  10.1016/j.scienta.2024.113031 DOI

Sattler M. C., Carvalho C. R., Clarindo W. R. (2016). The polyploidy and its key role in plant breeding. Planta 243, 281–296. doi:  10.1007/s00425-015-2450-x, PMID: PubMed DOI

Segraves K. A. (2017). The effects of genome duplications in a community context. New Phytol. 215, 57–69. doi:  10.1111/nph.14564, PMID: PubMed DOI

Šenkyřík J. B., Navrátilová B., Fišerová B., Kobrlová L., Ondřej V. (2024). Exploring DOI

Showalter A. M. (2001). Arabinogalactan-proteins: structure, expression and function. CMLS Cell. Mol. Life Sci. 58, 1399–1417. doi:  10.1007/PL00000784, PMID: PubMed DOI PMC

Soltis D. E., Albert V. A., Leebens-Mack J., Bell C. D., Paterson A. H., Zheng C., et al. (2009). Polyploidy and angiosperm diversification. Am. J. Bot. 96, 336–348. doi:  10.3732/ajb.0800079, PMID: PubMed DOI

Švécarová M., Navrátilová B., Hašler P., Ondřej V. (2019). Artificial induction of tetraploidy in Humulus lupulus L. using oryzalin. Acta Agrobot 72 (2), 1764. doi:  10.5586/aa.1764 DOI

Švécarová M., Navrátilová B., Ondřej V. (2018). DOI

Tan F.-Q., Tu H., Liang W.-J., Long J.-M., Wu X.-M., Zhang H.-Y., et al. (2015). Comparative metabolic and transcriptional analysis of a doubled diploid and its diploid citrus rootstock (C. junos cv. Ziyang xiangcheng) suggests its potential value for stress resistance improvement. BMC Plant Biol. 15, 89. doi:  10.1186/s12870-015-0450-4, PMID: PubMed DOI PMC

Tan F.-Q., Tu H., Wang R., Wu X.-M., Xie K.-D., Chen J.-J., et al. (2017). Metabolic adaptation following genome doubling in citrus doubled diploids revealed by non-targeted metabolomics. Metabolomics 13, 143. doi:  10.1007/s11306-017-1276-x DOI

Tang Z.-Q., Chen D.-L., Song Z.-J., He Y.-C., Cai D.-T. (2010). DOI

Tavan M., Mirjalili M. H., Karimzadeh G. (2015). DOI

Thriveni V., Paul M., Voruganti C., Kumar V. V., Kumar J. V., Reddy B. S. K., et al. (2024). Impact of polyploidy on crop improvement and plant breeding strategies: A review. J. Adv. Biol. Biotechnol. 27, 714–725. doi:  10.9734/jabb/2024/v27i111655 DOI

Tosca A., Pandolfi R., Citterio S., Fasoli A., Sgorbati S. (1995). Determination by flow cytometry of the chromosome doubling capacity of colchicine and oryzalin in gynogenetic haploids of gerbera. Plant Cell Rep. 14 (2), 1764. doi:  10.1007/BF00234054, PMID: PubMed DOI

Trojak-Goluch A., Kawka-Lipińska M., Wielgusz K., Praczyk M. (2021). Polyploidy in industrial crops: applications and perspectives in plant breeding. Agronomy 11, 2574. doi:  10.3390/agronomy11122574 DOI

Tyree M. T., Zimmermann M. H. (2002). Xylem structure and the ascent of sap. 2nd ed. (Berlin, Heidelberg: Springer; ).

Van Der Salm T. P. M., van der Toorn C. J. G., Hänisch Ten Cate C. H., Dubois L. A. M., De Vries D. P., Dons H. J. M. (1994). Importance of the iron chelate formula for micropropagation of Rosa hybrida L. ‘Moneyway.’. Plant Cell Tiss Organ Cult 37, 73–77. doi:  10.1007/BF00048120 DOI

Vasavada N. (2016). One-Way ANOVA (ANalysis Of VAriance) with Post-Hoc Tukey HSD (Honestly Significant Difference) Test Calculator for Comparing Multiple Treatments. Available online: https://astatsa.com/OneWay_Anova_with_TukeyHSD/ (Accessed September 29, 2025)

Wang X., Shen C., Meng P., Tan G., Lv L. (2021). Analysis and review of trichomes in plants. BMC Plant Biol. 21, 70. doi:  10.1186/s12870-021-02840-x, PMID: PubMed DOI PMC

Whipkey A., Simon J. E., Janick J. (1988). DOI

Willats W. G. T., Knox J. P. (1999). Immunoprofiling of pectic polysaccharides. Analytical Biochem. 268, 143–146. doi:  10.1006/abio.1998.3039, PMID: PubMed DOI

Willats W. G. T., Marcus S. E., Knox J. P. (1998). Generation of a monoclonal antibody specific to (1→5)-α-l-arabinan. Carbohydr. Res. 308, 149–152. doi:  10.1016/S0008-6215(98)00070-6, PMID: PubMed DOI

Wolf S., Mouille G., Pelloux J. (2009). Homogalacturonan methyl-esterification and plant development. Mol. Plant 2, 851–860. doi:  10.1093/mp/ssp066, PMID: PubMed DOI

Wormit A., Usadel B. (2018). The multifaceted role of pectin methylesterase inhibitors (PMEIs). IJMS 19, 2878. doi:  10.3390/ijms19102878, PMID: PubMed DOI PMC

Xing S.-H., Guo X.-B., Wang Q., Pan Q.-F., Tian Y.-S., Liu P., et al. (2011). Induction and Flow Cytometry Identification of Tetraploids from Seed-Derived Explants through Colchicine Treatments in PubMed DOI PMC

Xu C., Tang T., Chen R., Liang C., Liu X., Wu C., et al. (2014). A comparative study of bioactive secondary metabolite production in diploid and tetraploid EChinacea purpurea (L.) Moench. Plant Cell Tiss Organ Cult 116, 323–332. doi:  10.1007/s11240-013-0406-z DOI

Yates E. A., Valdor J.-F., Haslam S. M., Morris H. R., Dell A., Mackie W., et al. (1996). Characterization of carbohydrate structural features recognized by anti-arabinogalactan-protein monoclonal antibodies. Glycobiology 6, 131–139. doi:  10.1093/glycob/6.2.131, PMID: PubMed DOI

Zhang H., An S., Hu J., Lin Z., Liu X., Bao H., et al. (2018). Induction, identification and characterization of polyploidy in PubMed DOI PMC

Zhu Y., Wang X., He Y., Liu Y., Wang R., Liu Y., et al. (2024). Chromosome doubling increases PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...