Design, synthesis, and biological evaluation of novel 3-oxo-2,3-dihydropyridazine derivatives as interleukin-2-inducible T-cell kinase (ITK) inhibitors
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41356712
PubMed Central
PMC12679438
DOI
10.1039/d5ra06565h
PII: d5ra06565h
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This study reports the design, synthesis, and biological evaluation of a novel series of 3-oxo-2,3-dihydropyridazine derivatives, representing a previously unexplored scaffold for selective inhibition of interleukin-2-inducible T-cell kinase (ITK), with potential application in T-cell leukemia treatment. Cytotoxicity was assessed across a panel of ITK-expressing leukemia cell lines (Jurkat, CCRF-CEM), Bruton's tyrosine kinase (BTK)-positive lines (Ramos, K562), ITK/BTK-null cancer cells, and non-cancerous fibroblasts to determine therapeutic selectivity. Compound 9 emerged as the lead candidate, showing selective ITK inhibition in biochemical kinase assays (half-maximal inhibitory concentration, IC50 = 0.87 µM) with no measurable BTK inhibition, moderate cytotoxicity in Jurkat cells (cellular IC50 = 37.61 µM), and did not show measurable cytotoxicity in fibroblasts (IC50 > 50 µM). In contrast, 22 exhibited greater potency in both kinase [IC50 (ITK) = 0.19 µM] and cytotoxicity assay [IC50 (Jurkat) = 11.17 µM], but showed partial BTK inhibition, indicating reduced selectivity. Structure-activity relationship analysis indicated that the 3,5-difluorophenyl and furan-2-ylmethyl groups in 22 contributed to potency, while the 3-fluorophenyl group in 9 was associated with improved selectivity. Importantly, western blot analysis confirmed that 9 reduced phosphorylation of ITK (Tyr551/Tyr511) and downstream extracellular signal-regulated kinase 1/2 (ERK1/2) (Thr202/Tyr204) in phytohemagglutinin-stimulated Jurkat cells, supporting on-target inhibition of ITK signaling. These results position 9 as a selective ITK inhibitor with a favorable therapeutic index, establishing a foundation for further optimization and preclinical development.
Zobrazit více v PubMed
Schmidt U. Boucheron N. Kiefer F. Trends Immunol. 2017;38(5):342–355.
Huang W. Solt L. A. Wang Y. Front. Immunol. 2020;11:1986. doi: 10.3389/fimmu.2020.01986. PubMed DOI PMC
Müller A. J. Filipe-Santos O. Eberl G. Aebischer T. Späth G. F. Bousso P. Immunity. 2012;37(1):147–157. doi: 10.1016/j.immuni.2012.05.015. PubMed DOI
Gomez-Rodriguez J. Readinger J. A. Viorritto I. C. Schwartzberg P. L. Immunol. Rev. 2016;231(1):45–56. doi: 10.1111/j.1600-065X.2007.00534.x. PubMed DOI
Readinger J. A. Mueller K. L. Venegas A. M. Horai R. Schwartzberg P. L. Nat. Rev. Immunol. 2008;8(10):865–876.
Yayan J. Franke K. J. Berger M. Windisch W. Rasche K. Mol. Biol. Rep. 2024;51(1):165. doi: 10.1007/s11033-023-08920-5. PubMed DOI PMC
Liu Y. Wang X. Deng L. Cancer Cell Int. 2019;19:32. doi: 10.1186/s12935-019-0754-9. PubMed DOI PMC
Onidani K. Miura N. Sugiura Y. Abe Y. Watabe Y. Kakuya T. Mori T. Yoshimoto S. Adachi J. Kiyoi T. Kabe Y. Suematsu M. Tomonaga T. Shibahara T. Honda K. Cancers. 2021;13(13):3333. doi: 10.3390/cancers13133333. PubMed DOI PMC
Flefel E. M. Tantawy W. A. El-Sofany W. I. El-Shahat M. El-Sayed A. A. Abd-Elshafy D. N. Molecules. 2017;22(1):148. doi: 10.3390/molecules22010148. PubMed DOI PMC
Malik A. Mishra R. Mazumder R. Mazumder A. Mishra P. S. Res. J. Pharm. Technol. 2021;14(6):3423–3429.
Rimaz M. Mousavi H. Turk. J. Chem. 2013;37:252–261.
Liu Z.-Q. Zhang Q. Liu Y.-L. Yu X.-Q. Chui R.-H. Zhang L.-L. Zhao B. Ma L.-Y. Bioorg. Med. Chem. 2024;111:117847. doi: 10.1016/j.bmc.2024.117847. PubMed DOI
Charrier J. D. Miller A. Kay D. P. Brenchley G. Twin H. C. Collier P. N. Ramaya S. Keily S. B. Durrant S. J. Knegtel R. M. Tanner A. J. Brown K. Curnock A. P. Jimenez J. M. J. Med. Chem. 2011;54:2341–2353. doi: 10.1021/jm101499u. PubMed DOI
Muddasani G. Rampeesa N. K. Anugu S. Muddasani P. Gurská S. Džubák P. Hajdúch M. Das V. Gundla R. Bioorg. Med. Chem. 2025;20:118116. doi: 10.1016/j.bmc.2025.118116. PubMed DOI
Rampeesa N. K. et al. . Bioorg. Chem. 2025;157:108316. doi: 10.1016/j.bioorg.2025.108316. PubMed DOI
Vargas L. Hamasy A. Nore B. F. Smith E. Scand. J. Immunol. 2013;78:130–139. doi: 10.1111/sji.12069. PubMed DOI
Shome A. Jha K. T. Chawla P. A. SynOpen. 2023;7(4):566–569. doi: 10.1055/s-0042-1751499. DOI
Fyfe J. W. B. Fazakerley N. J. Watson A. J. B. Angew. Chem., Int. Ed. 2017;56(5):1249–1253. doi: 10.1002/anie.201610797. PubMed DOI
Noriko S., Jun E., Hiroshi N., Megumi U., Yusuke S., Yusuke I., Michiaki A., Yuichi H., Takeshi K. and Koichi Y., WO2013147183, 2013
Allwood D. M. Blakemore D. C. Brown A. D. Ley S. V. J. Org. Chem. 2014;79(1):328–338. doi: 10.1021/jo402526z. PubMed DOI
Duque R., Lorena J., Brill Z., Fradera G., Siliphaivanh X., Su P. and Jing J., WO2021252307, 2016
Buriánová R. and Kotulová J., Laboratory Techniques in Cellular and Molecular Medicine, Palacký University Olomouc, Olomouc, 1st edn, 2022, pp. 37–42
Stránská J., Laboratory Techniques in Cellular and Molecular Medicine, Palacký University Olomouc, Olomouc, 1st edn, 2022, pp. 29–36
Gurská S., Laboratory Techniques in Cellular and Molecular Medicine, Palacký University Olomouc, 1st edn, 2022, pp. 67–72
Koraboina C. P. Maddipati V. C. Annadurai N. Gurská S. Džubák P. Hajdúch M. Das V. Gundla R. ChemMedChem. 2024;19(1):e202300511. doi: 10.1002/cmdc.202300511. PubMed DOI
Pettersen F. Goddard T. D. Huang C. C. Couch S. Greenblatt D. M. Meng E. C. Ferrin T. E. J. Comput. Chem. 2004;25(13):1605–1612. doi: 10.1002/jcc.20084. PubMed DOI
Trott O. Olson A. J. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Ramchmilewitz J. Riely G. J. Huang J. H. Chen A. Tykocinski M. L. Blood. 2001;98:1656. PubMed