Transmembrane Transport of cAMP and AMP Using a Two Component Small Molecule Transport System
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
#2108699
National Science Foundation
#2216220
National Science Foundation
Fonds de la Recherche Scientifique - FNRS
PubMed
41367116
PubMed Central
PMC12828476
DOI
10.1002/anie.202524663
Knihovny.cz E-zdroje
- Klíčová slova
- Anionophore, Nucleotide, Supramolecular chemistry, Transmembrane transport, cAMP,
- MeSH
- adenosinmonofosfát * metabolismus chemie MeSH
- AMP cyklický * metabolismus chemie MeSH
- biologický transport MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- liposomy chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosinmonofosfát * MeSH
- AMP cyklický * MeSH
- lipidové dvojvrstvy MeSH
- liposomy MeSH
Nucleotides such as cAMP (cyclic adenosine monophosphate) and AMP (adenosine monophosphate) are central to many cellular processes, but their highly hydrophilic and charged nature prevents passive permeation across lipid bilayers. Here, we report the first example of facilitated transport of cAMP and AMP across liposome membranes using a neutral two-component system at physiological pH. This system pairs a synthetic anionophore targeting the phosphate group with a thymine derivative to boost transport efficiency. Liposome-based fluorescence and 31P NMR experiments confirmed transmembrane transport, supported by control experiments. A fluorinated squaramide proved to be the best transporter and was able to transport cAMP even without the help of a thymine derivative, as well as AMP in the presence of a lipophilic thymine derivative. These findings show that carefully designed small molecules can enable direct nucleotide translocation, with potential applications in drug delivery and synthetic biology.
Department of Chemistry Faculty of Science Masaryk University Kamenice 5 Brno 625 00 Czech Republic
Department of Chemistry Tulane University 6400 Freret St New Orleans LA 70118 USA
Zobrazit více v PubMed
Cragg P. J., Sci. Prog. 2002, 85, 219–241, 10.3184/003685002783238780. PubMed DOI PMC
Davis A. P., Sheppard D. N., Smith B. D., Chem. Soc. Rev. 2007, 36, 348–357, 10.1039/B512651G. PubMed DOI PMC
Rathnaweera U. M. C., Chowdhury S. M., Salam R., Busschaert N., Chem. Rev. 2025, 125, 8370–8425, 10.1021/acs.chemrev.5c00129. PubMed DOI PMC
Fontecilla‐Camps J. C., ChemBioChem. 2022, 23, e202200064. PubMed
Dunn J., Grider M. H., StatPearls [Internet], StatPearls Publishing, Treasure Island (FL) 2025.
Weis W. I., Kobilka B. K., Annu. Rev. Biochem. 2018, 87, 897–919, 10.1146/annurev-biochem-060614-033910. PubMed DOI PMC
Herzig S., Shaw R. J., Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135, 10.1038/nrm.2017.95. PubMed DOI PMC
Friebe A., Sandner P., Schmidtko A., Naunyn‐Schmiedeberg's Arch. Pharmacol. 2020, 393, 287–302, 10.1007/s00210-019-01779-z. PubMed DOI PMC
Jin J., Kunapuli S. P., Proc. Natl. Acad. Sci 1998, 95, 8070–8074, 10.1073/pnas.95.14.8070. PubMed DOI PMC
Copsel S., Garcia C., Diez F., Vermeulem M., Baldi A., Bianciotti L. G., Russel F. G., Shayo C., Davio C., J. Biol. Chem. 2011, 286, 6979–6988, 10.1074/jbc.M110.166868. PubMed DOI PMC
Jordheim L. P., Durantel D., Zoulim F., Dumontet C., Nat. Rev. Drug Discovery 2013, 12, 447–464, 10.1038/nrd4010. PubMed DOI
Baker D. C., Chu C., Nucleosides and nucleotides as antitumor and antiviral agents, Springer Science+Business Media New York, New York, NY, United States of America. 2013.
Geraghty R. J., Aliota M. T., Bonnac L. F., Viruses 2021, 13, 667, 10.3390/v13040667. PubMed DOI PMC
Zenchenko A. A., Drenichev M. S., Il'icheva I. A., Mikhailov S. N., Mol. Biol. 2021, 55, 786–812, 10.1134/S0026893321040105. PubMed DOI PMC
Beutel A. K., Halbrook C. J., Am. J. Physiol. Cell Physiol. 2023, 324, C540–C552, 10.1152/ajpcell.00331.2022. PubMed DOI PMC
To E. E., Drug Metab. Dispos. 2023, 51, 360–368, 10.1124/dmd.122.000856. PubMed DOI
Hecker S. J., Erion M. D., J. Med. Chem. 2008, 51, 2328–2345, 10.1021/jm701260b. PubMed DOI
Ray A. S., Hostetler K. Y., Antiviral Res. 2011, 92, 277–291, 10.1016/j.antiviral.2011.08.015. PubMed DOI
Hurwitz S. J., Schinazi R. F., Curr. Opin. HIV AIDS 2013, 8, 556–564, 10.1097/COH.0000000000000007. PubMed DOI PMC
Wiemer A. J., Wiemer D. F., Top. Curr. Chem. 2015, 360, 115–160. PubMed PMC
Marcus Y., J. Chem. Soc., Faraday Trans. 1991, 87, 2995–2999, 10.1039/FT9918702995. DOI
Thornton P. J., Kadri H., Miccoli A., Mehellou Y., J. Med. Chem. 2016, 59, 10400–10410, 10.1021/acs.jmedchem.6b00523. PubMed DOI
Zhang Y., Kim W. Y., Huang L., Biomaterials 2013, 34, 3447–3458, 10.1016/j.biomaterials.2013.01.063. PubMed DOI PMC
Rodriguez‐Ruiz V., Maksimenko A., Anand R., Monti S., Agostoni V., Couvreur P., Lampropoulou M., Yannakopoulou K., Gref R., J. Drug Targeting 2015, 23, 759–767, 10.3109/1061186X.2015.1073294. PubMed DOI
Rodriguez‐Ruiz V., Maksimenko A., Salzano G., Lampropoulou M., Lazarou Y. G., Agostoni V., Couvreur P., Gref R., Yannakopoulou K., Sci. Rep. 2017, 7, 8353, 10.1038/s41598-017-08727-y. PubMed DOI PMC
Zawada Z., Tatar A., Mocilac P., Buděšínský M., Kraus T., Angew. Chem. Int. Ed. 2018, 57, 9891–9895, 10.1002/anie.201801306. PubMed DOI
Janout V., Jing B. W., Regen S. L., Bioconjugate Chem. 2002, 13, 351–356, 10.1021/bc015564m. PubMed DOI
Janout V., Jing B., Staina I. V., Regen S. L., J. Am. Chem. Soc. 2003, 125, 4436–4437, 10.1021/ja0291336. PubMed DOI
Vinogradov S. V., Zeman A. D., Batrakova E. V., Kabanov A. V., J. Controlled Release 2005, 107, 143–157, 10.1016/j.jconrel.2005.06.002. PubMed DOI PMC
Vinogradov S. V., Kohli E., Zeman A. D., Mol. Pharmaceutics 2005, 2, 449–461, 10.1021/mp0500364. PubMed DOI PMC
Kohli E., Han H.‐Y., Zeman A. D., Vinogradov S. V., J. Controlled Release 2007, 121, 19–27, 10.1016/j.jconrel.2007.04.007. PubMed DOI PMC
Nie Q., Tang J., Li Y., Wang J., Li B., Ma H., Yang X.‐J., Zhao W., Wu B., Angew. Chem. Int. Ed. 2025, 64, e202509002. PubMed
Tabushi I., Kobuke Y., Imuta J., J. Am. Chem. Soc. 1980, 102, 1744–1745, 10.1021/ja00525a056. DOI
Li T., Diederich F., J. Org. Chem. 1992, 57, 3449–3454, 10.1021/jo00038a039. DOI
Riggs J. A., Hossler K. A., Smith B. D., Karpa M. J., Griffin G., Duggan P. J., Tetrahedron Lett. 1996, 37, 6303–6306, 10.1016/0040-4039(96)01385-8. DOI
Andreu C., Galan A., Kobiro K., de Mendoza J., Park T. K., Rebek J. J., Salmeron A., Usman N., J. Am. Chem. Soc. 1994, 116, 5501–5502, 10.1021/ja00091a077. DOI
Yeo W.‐S., Hong J.‐I., Tetrahedron Lett. 1998, 39, 3769–3772, 10.1016/S0040-4039(98)00612-1. DOI
Lee S., Chem. Commun. 1997, 11, 1061–1062.
Furuta H., Cyr M. J., Sessler J. L., J. Am. Chem. Soc. 1991, 113, 6677–6678, 10.1021/ja00017a051. DOI
Jung Y.‐G., Yeo W.‐S., Bok Lee S., Hong J.‐I., Chem. Commun. 1997, 1061–1062, 10.1039/a700527j. DOI
Busschaert N., Karagiannidis L. E., Wenzel M., Haynes C. J., Wells N. J., Young P. G., Makuc D., Plavec J., Jolliffe K. A., Gale P. A., Chem. Sci. 2014, 5, 1118, 10.1039/c3sc52006d. DOI
Torres‐Huerta A., Norvaisa K., Cataldo A., Tits P.‐O., Panda P. R., Dias C. M., Davis A. P., Bodman S. E., Butler S. J., Valkenier H., Chem.Eur. 2025, 3, e202400076.
Busschaert N., Kirby I. L., Young S., Coles S. J., Horton P. N., Light M. E., Gale P. A., Angew. Chem. Int. Ed. 2012, 51, 4426–4430, 10.1002/anie.201200729. PubMed DOI
Wu X., Busschaert N., Wells N. J., Jiang Y.‐B., Gale P. A., J. Am. Chem. Soc. 2015, 137, 1476–1484, 10.1021/ja510063n. PubMed DOI
Young J. D., Yao S. Y. M., Baldwin J. M., Cass C. E., Baldwin S. A., Mol. Asp. Med. 2013, 34, 529–547, 10.1016/j.mam.2012.05.007. PubMed DOI
Pastor‐Anglada M., Pérez‐Torras S., Front. Pharmacol. 2018, 9, 606. PubMed PMC
Busschaert N., Wenzel M., Light M. E., Iglesias‐Hernández P., Pérez‐Tomás R., Gale P. A., J. Am. Chem. Soc. 2011, 133, 14136–14148, 10.1021/ja205884y. PubMed DOI PMC
Chvojka M., Singh A., Cataldo A., Torres‐Huerta A., Konopka M., Šindelář V., Valkenier H., Analysis & Sensing 2024, 4, e202300044.
Riddell F. G., Arumugam S., Patel A., J. Chem. Soc., Chem. Commun. 1990, 74–76, 10.1039/c39900000074. DOI
Davis J. T., Gale P. A., Okunola O. A., Prados P., Iglesias‐Sánchez J. C., Torroba T., Quesada R., Nat. Chem. 2009, 1, 138–144, 10.1038/nchem.178. PubMed DOI
Cataldo A., Norvaisa K., Halgreen L., Bodman S. E., Bartik K., Butler S. J., Valkenier H., J. Am. Chem. Soc. 2023, 145, 16310–16314, 10.1021/jacs.3c04631. PubMed DOI
Chen L., Si W., Zhang L., Tang G., Li Z.‐T., Hou J.‐L., J. Am. Chem. Soc. 2013, 135, 2152–2155, 10.1021/ja312704e. PubMed DOI
Brynn Hibbert D., Thordarson P., Chem. Commun. 2016, 52, 12792–12805, 10.1039/C6CC03888C. PubMed DOI
Šponer J., Leszczynski J., Hobza P., Biopolymers 2001, 61, 3–31. PubMed
Mohajeri A., Nobandegani F. F., J. Phys. Chem. A 2008, 112, 281–295, 10.1021/jp075992a. PubMed DOI
Dey M., Grotemeyer J., Schlag E. W., Z. Naturforsch. A 1994, 49, 776–784, 10.1515/zna-1994-7-808. DOI
Huber C., Fähnrich K., Krause C., Werner T., J. Photochem. Photobiol., A 1999, 128, 111–120, 10.1016/S1010-6030(99)00160-4. DOI
Fukushima M., Kikkawa S., Hikawa H., Azumaya I., CrystEngComm 2017, 19, 3398–3406, 10.1039/C7CE00640C. DOI
Jaffe E. K., Cohn M., Biochemistry 1978, 17, 652–657, 10.1021/bi00597a014. PubMed DOI
Chvojka M., Singh A., Cataldo A., Torres‐Huerta A., Konopka M., Šindelář V., Valkenier H., Analysis & Sensing 2024, 4, e202300044.
Chang G., Guida W. C., Still W. C., J. Am. Chem. Soc. 1989, 111, 4379–4386, 10.1021/ja00194a035. DOI
Harris F. M., Best K. B., Bell J. D., Biochim. Biophys. Acta, Biomembr. 2002, 1565, 123–128, 10.1016/S0005-2736(02)00514-X. PubMed DOI
He W., in Liposomes: Methods and Protocols (Eds: D'Souza G. G. M., Zhang H.), Springer, New York, NY: 2023, pp. 241–244.