Transmembrane Transport of cAMP and AMP Using a Two Component Small Molecule Transport System

. 2026 Jan 22 ; 65 (4) : e24663. [epub] 20251209

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41367116

Grantová podpora
#2108699 National Science Foundation
#2216220 National Science Foundation
Fonds de la Recherche Scientifique - FNRS

Nucleotides such as cAMP (cyclic adenosine monophosphate) and AMP (adenosine monophosphate) are central to many cellular processes, but their highly hydrophilic and charged nature prevents passive permeation across lipid bilayers. Here, we report the first example of facilitated transport of cAMP and AMP across liposome membranes using a neutral two-component system at physiological pH. This system pairs a synthetic anionophore targeting the phosphate group with a thymine derivative to boost transport efficiency. Liposome-based fluorescence and 31P NMR experiments confirmed transmembrane transport, supported by control experiments. A fluorinated squaramide proved to be the best transporter and was able to transport cAMP even without the help of a thymine derivative, as well as AMP in the presence of a lipophilic thymine derivative. These findings show that carefully designed small molecules can enable direct nucleotide translocation, with potential applications in drug delivery and synthetic biology.

Zobrazit více v PubMed

Cragg P. J., Sci. Prog. 2002, 85, 219–241, 10.3184/003685002783238780. PubMed DOI PMC

Davis A. P., Sheppard D. N., Smith B. D., Chem. Soc. Rev. 2007, 36, 348–357, 10.1039/B512651G. PubMed DOI PMC

Rathnaweera U. M. C., Chowdhury S. M., Salam R., Busschaert N., Chem. Rev. 2025, 125, 8370–8425, 10.1021/acs.chemrev.5c00129. PubMed DOI PMC

Fontecilla‐Camps J. C., ChemBioChem. 2022, 23, e202200064. PubMed

Dunn J., Grider M. H., StatPearls [Internet], StatPearls Publishing, Treasure Island (FL) 2025.

Weis W. I., Kobilka B. K., Annu. Rev. Biochem. 2018, 87, 897–919, 10.1146/annurev-biochem-060614-033910. PubMed DOI PMC

Herzig S., Shaw R. J., Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135, 10.1038/nrm.2017.95. PubMed DOI PMC

Friebe A., Sandner P., Schmidtko A., Naunyn‐Schmiedeberg's Arch. Pharmacol. 2020, 393, 287–302, 10.1007/s00210-019-01779-z. PubMed DOI PMC

Jin J., Kunapuli S. P., Proc. Natl. Acad. Sci 1998, 95, 8070–8074, 10.1073/pnas.95.14.8070. PubMed DOI PMC

Copsel S., Garcia C., Diez F., Vermeulem M., Baldi A., Bianciotti L. G., Russel F. G., Shayo C., Davio C., J. Biol. Chem. 2011, 286, 6979–6988, 10.1074/jbc.M110.166868. PubMed DOI PMC

Jordheim L. P., Durantel D., Zoulim F., Dumontet C., Nat. Rev. Drug Discovery 2013, 12, 447–464, 10.1038/nrd4010. PubMed DOI

Baker D. C., Chu C., Nucleosides and nucleotides as antitumor and antiviral agents, Springer Science+Business Media New York, New York, NY, United States of America. 2013.

Geraghty R. J., Aliota M. T., Bonnac L. F., Viruses 2021, 13, 667, 10.3390/v13040667. PubMed DOI PMC

Zenchenko A. A., Drenichev M. S., Il'icheva I. A., Mikhailov S. N., Mol. Biol. 2021, 55, 786–812, 10.1134/S0026893321040105. PubMed DOI PMC

Beutel A. K., Halbrook C. J., Am. J. Physiol. Cell Physiol. 2023, 324, C540–C552, 10.1152/ajpcell.00331.2022. PubMed DOI PMC

To E. E., Drug Metab. Dispos. 2023, 51, 360–368, 10.1124/dmd.122.000856. PubMed DOI

Hecker S. J., Erion M. D., J. Med. Chem. 2008, 51, 2328–2345, 10.1021/jm701260b. PubMed DOI

Ray A. S., Hostetler K. Y., Antiviral Res. 2011, 92, 277–291, 10.1016/j.antiviral.2011.08.015. PubMed DOI

Hurwitz S. J., Schinazi R. F., Curr. Opin. HIV AIDS 2013, 8, 556–564, 10.1097/COH.0000000000000007. PubMed DOI PMC

Wiemer A. J., Wiemer D. F., Top. Curr. Chem. 2015, 360, 115–160. PubMed PMC

Marcus Y., J. Chem. Soc., Faraday Trans. 1991, 87, 2995–2999, 10.1039/FT9918702995. DOI

Thornton P. J., Kadri H., Miccoli A., Mehellou Y., J. Med. Chem. 2016, 59, 10400–10410, 10.1021/acs.jmedchem.6b00523. PubMed DOI

Zhang Y., Kim W. Y., Huang L., Biomaterials 2013, 34, 3447–3458, 10.1016/j.biomaterials.2013.01.063. PubMed DOI PMC

Rodriguez‐Ruiz V., Maksimenko A., Anand R., Monti S., Agostoni V., Couvreur P., Lampropoulou M., Yannakopoulou K., Gref R., J. Drug Targeting 2015, 23, 759–767, 10.3109/1061186X.2015.1073294. PubMed DOI

Rodriguez‐Ruiz V., Maksimenko A., Salzano G., Lampropoulou M., Lazarou Y. G., Agostoni V., Couvreur P., Gref R., Yannakopoulou K., Sci. Rep. 2017, 7, 8353, 10.1038/s41598-017-08727-y. PubMed DOI PMC

Zawada Z., Tatar A., Mocilac P., Buděšínský M., Kraus T., Angew. Chem. Int. Ed. 2018, 57, 9891–9895, 10.1002/anie.201801306. PubMed DOI

Janout V., Jing B. W., Regen S. L., Bioconjugate Chem. 2002, 13, 351–356, 10.1021/bc015564m. PubMed DOI

Janout V., Jing B., Staina I. V., Regen S. L., J. Am. Chem. Soc. 2003, 125, 4436–4437, 10.1021/ja0291336. PubMed DOI

Vinogradov S. V., Zeman A. D., Batrakova E. V., Kabanov A. V., J. Controlled Release 2005, 107, 143–157, 10.1016/j.jconrel.2005.06.002. PubMed DOI PMC

Vinogradov S. V., Kohli E., Zeman A. D., Mol. Pharmaceutics 2005, 2, 449–461, 10.1021/mp0500364. PubMed DOI PMC

Kohli E., Han H.‐Y., Zeman A. D., Vinogradov S. V., J. Controlled Release 2007, 121, 19–27, 10.1016/j.jconrel.2007.04.007. PubMed DOI PMC

Nie Q., Tang J., Li Y., Wang J., Li B., Ma H., Yang X.‐J., Zhao W., Wu B., Angew. Chem. Int. Ed. 2025, 64, e202509002. PubMed

Tabushi I., Kobuke Y., Imuta J., J. Am. Chem. Soc. 1980, 102, 1744–1745, 10.1021/ja00525a056. DOI

Li T., Diederich F., J. Org. Chem. 1992, 57, 3449–3454, 10.1021/jo00038a039. DOI

Riggs J. A., Hossler K. A., Smith B. D., Karpa M. J., Griffin G., Duggan P. J., Tetrahedron Lett. 1996, 37, 6303–6306, 10.1016/0040-4039(96)01385-8. DOI

Andreu C., Galan A., Kobiro K., de Mendoza J., Park T. K., Rebek J. J., Salmeron A., Usman N., J. Am. Chem. Soc. 1994, 116, 5501–5502, 10.1021/ja00091a077. DOI

Yeo W.‐S., Hong J.‐I., Tetrahedron Lett. 1998, 39, 3769–3772, 10.1016/S0040-4039(98)00612-1. DOI

Lee S., Chem. Commun. 1997, 11, 1061–1062.

Furuta H., Cyr M. J., Sessler J. L., J. Am. Chem. Soc. 1991, 113, 6677–6678, 10.1021/ja00017a051. DOI

Jung Y.‐G., Yeo W.‐S., Bok Lee S., Hong J.‐I., Chem. Commun. 1997, 1061–1062, 10.1039/a700527j. DOI

Busschaert N., Karagiannidis L. E., Wenzel M., Haynes C. J., Wells N. J., Young P. G., Makuc D., Plavec J., Jolliffe K. A., Gale P. A., Chem. Sci. 2014, 5, 1118, 10.1039/c3sc52006d. DOI

Torres‐Huerta A., Norvaisa K., Cataldo A., Tits P.‐O., Panda P. R., Dias C. M., Davis A. P., Bodman S. E., Butler S. J., Valkenier H., Chem.Eur. 2025, 3, e202400076.

Busschaert N., Kirby I. L., Young S., Coles S. J., Horton P. N., Light M. E., Gale P. A., Angew. Chem. Int. Ed. 2012, 51, 4426–4430, 10.1002/anie.201200729. PubMed DOI

Wu X., Busschaert N., Wells N. J., Jiang Y.‐B., Gale P. A., J. Am. Chem. Soc. 2015, 137, 1476–1484, 10.1021/ja510063n. PubMed DOI

Young J. D., Yao S. Y. M., Baldwin J. M., Cass C. E., Baldwin S. A., Mol. Asp. Med. 2013, 34, 529–547, 10.1016/j.mam.2012.05.007. PubMed DOI

Pastor‐Anglada M., Pérez‐Torras S., Front. Pharmacol. 2018, 9, 606. PubMed PMC

Busschaert N., Wenzel M., Light M. E., Iglesias‐Hernández P., Pérez‐Tomás R., Gale P. A., J. Am. Chem. Soc. 2011, 133, 14136–14148, 10.1021/ja205884y. PubMed DOI PMC

Chvojka M., Singh A., Cataldo A., Torres‐Huerta A., Konopka M., Šindelář V., Valkenier H., Analysis & Sensing 2024, 4, e202300044.

Riddell F. G., Arumugam S., Patel A., J. Chem. Soc., Chem. Commun. 1990, 74–76, 10.1039/c39900000074. DOI

Davis J. T., Gale P. A., Okunola O. A., Prados P., Iglesias‐Sánchez J. C., Torroba T., Quesada R., Nat. Chem. 2009, 1, 138–144, 10.1038/nchem.178. PubMed DOI

Cataldo A., Norvaisa K., Halgreen L., Bodman S. E., Bartik K., Butler S. J., Valkenier H., J. Am. Chem. Soc. 2023, 145, 16310–16314, 10.1021/jacs.3c04631. PubMed DOI

Chen L., Si W., Zhang L., Tang G., Li Z.‐T., Hou J.‐L., J. Am. Chem. Soc. 2013, 135, 2152–2155, 10.1021/ja312704e. PubMed DOI

Brynn Hibbert D., Thordarson P., Chem. Commun. 2016, 52, 12792–12805, 10.1039/C6CC03888C. PubMed DOI

Šponer J., Leszczynski J., Hobza P., Biopolymers 2001, 61, 3–31. PubMed

Mohajeri A., Nobandegani F. F., J. Phys. Chem. A 2008, 112, 281–295, 10.1021/jp075992a. PubMed DOI

Dey M., Grotemeyer J., Schlag E. W., Z. Naturforsch. A 1994, 49, 776–784, 10.1515/zna-1994-7-808. DOI

Huber C., Fähnrich K., Krause C., Werner T., J. Photochem. Photobiol., A 1999, 128, 111–120, 10.1016/S1010-6030(99)00160-4. DOI

Fukushima M., Kikkawa S., Hikawa H., Azumaya I., CrystEngComm 2017, 19, 3398–3406, 10.1039/C7CE00640C. DOI

Jaffe E. K., Cohn M., Biochemistry 1978, 17, 652–657, 10.1021/bi00597a014. PubMed DOI

Chvojka M., Singh A., Cataldo A., Torres‐Huerta A., Konopka M., Šindelář V., Valkenier H., Analysis & Sensing 2024, 4, e202300044.

Chang G., Guida W. C., Still W. C., J. Am. Chem. Soc. 1989, 111, 4379–4386, 10.1021/ja00194a035. DOI

Harris F. M., Best K. B., Bell J. D., Biochim. Biophys. Acta, Biomembr. 2002, 1565, 123–128, 10.1016/S0005-2736(02)00514-X. PubMed DOI

He W., in Liposomes: Methods and Protocols (Eds: D'Souza G. G. M., Zhang H.), Springer, New York, NY: 2023, pp. 241–244.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...