Multiple Meniscus Depinning Transitions in Open Capillary Slits
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41392581
PubMed Central
PMC12746456
DOI
10.1021/acs.jpcb.5c07472
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We study edge-induced meniscus depinning transitions in confined fluids using a combination of macroscopic theory and classical density functional theory (DFT). The study focuses on macroscopically long slit geometries of width L bounded by planar walls where the open end has an overlap D, where sharp edges introduce distinct meniscus morphologies and continuous depinning transitions. The macroscopic analysis predicts four distinct condensed states: fully pinned, partially pinned, and depinned whose stability depends sensitively on the wall separation ratio D/L and the Young contact angle θ. These transitions are second order, if the walls are partially wet, and third order if they are complete wet (θ = 0) or completely dry (θ = π). Microscopic DFT calculations confirm the existence and sequence of these morphologies in very good quantitative agreement with the macroscopic predictions, except for complete wetting, where the presence of thick adsorbed films effectively reduces the accessible slit width.
Zobrazit více v PubMed
Sullivan, D. E. ; M. M., Telo da Gama . Fluid Interfacial Phenomena, Croxton, C. A. , Ed.; Wiley, New York, 1985.
Dietrich, S. Phase Transitions and Critical Phenomena, Domb, C. ; Lebowitz, J. L. , Eds.; Academic, New York, 1988, Vol. 12.
Schick, M. Liquids and Interfaces; Chorvolin, J. , Joanny, J. F. , Zinn-Justin, J. , Eds.; Elsevier: New York, 1990.
Forgacs, G. ; Lipowsky, R. ; Nieuwenhuizen Th, M. . Phase Transitions and Critical Phenomena Vol 14, ed. by Domb, C. ; Lebowitz, J. L. , Eds.; Academic, London, 1991.
Henderson, D. Fundamentals of Inhomoheneous Fluids; Marcel Dekker: New York, 1992.
Gelb L. D., Gubbins K. E., Radhakrishnan R., Sliwinska-Bartkowiak M.. Rep. Prog. Phys. 1999;62:1573–1659. doi: 10.1088/0034-4885/62/12/201. DOI
Saam W. F.. J. Low Temp. Phys. 2009;157:77. doi: 10.1007/s10909-009-9904-0. DOI
Bonn D., Eggers J., Indekeu J., Meunier J., Rolley E.. Rev. Mod. Phys. 2009;81:739. doi: 10.1103/RevModPhys.81.739. DOI
Thomson W.. Lond. Edinb. Dubl. Phil. Mag. 1871;42:448. doi: 10.1080/14786447108640606. DOI
Gregg, S. J. ; Sing, K. S. W. . Adsorption, Surface Area and Porosity Academic Press, New York, 1982.
Cahn J. W.. J. Chem. Phys. 1977;66:3667. doi: 10.1063/1.434402. DOI
Ebner C., Saam W. F.. Phys. Rev. Lett. 1977;38:1486. doi: 10.1103/PhysRevLett.38.1486. PubMed DOI
Darbellay G. A., Yeomans J. M.. J. Phys. A: Math. Gen. 1992;25:4275. doi: 10.1088/0305-4470/25/16/006. DOI
Robbins M. O., Andelman D., Joanny J. F.. Phys. Rev. A. 1991;43:4344. doi: 10.1103/PhysRevA.43.4344. PubMed DOI
Tasinkevych M., Dietrich S.. Phys. Rev. Lett. 2006;97:106102. doi: 10.1103/PhysRevLett.97.106102. PubMed DOI
Tasinkevych M., Dietrich S.. Eur. Phys. J. E. 2007;23:117. doi: 10.1140/epje/i2007-10184-5. PubMed DOI
Hofmann T., Tasinkevych M., Checco A., Dobisz E., Dietrich S., Ocko B. M.. Phys. Rev. Lett. 2010;104:106102. doi: 10.1103/PhysRevLett.104.106102. PubMed DOI
Malijevský A.. J. Phys.: Condens. Matter. 2013;25:445006. doi: 10.1088/0953-8984/25/44/445006. PubMed DOI
Rascón C., Parry A. O., Nürnberg R., Pozzato A., Tormen M., Bruschi L., Mistura G.. J. Phys.: Condens. Matter. 2013;25:192101. doi: 10.1088/0953-8984/25/19/192101. PubMed DOI
Malijevský A., Parry A. O.. J. Phys.: Condens. Matter. 2014;26:355003. doi: 10.1088/0953-8984/26/35/355003. PubMed DOI
Singh S. L., Schimmele L., Dietrich S.. Phys. Rev. E. 2015;91:032405. doi: 10.1103/PhysRevE.91.032405. PubMed DOI
Malijevský A.. Phys. Rev. E. 2020;102:012804. doi: 10.1103/PhysRevE.102.012804. PubMed DOI
Singh S. L., Schimmele L., Dietrich S.. Phys. Rev. E. 2022;105:044803. doi: 10.1103/PhysRevE.105.044803. PubMed DOI
Hauge E. H.. Phys. Rev. A. 1992;46:4994. doi: 10.1103/PhysRevA.46.4994. PubMed DOI
Rejmer K., Dietrich S., Napirkówski M.. Phys. Rev. E. 1999;60:4027. doi: 10.1103/physreve.60.4027. PubMed DOI
Parry A. O., Rascón C., Wood A. J.. Phys. Rev. Lett. 2000;85:345. doi: 10.1103/PhysRevLett.85.345. PubMed DOI
Milchev A., Müller M., Binder K., Landau D. P.. Phys. Rev. Lett. 2003;90:136101. doi: 10.1103/PhysRevLett.90.136101. PubMed DOI
Malijevský A., Parry A. O.. Phys. Rev. Lett. 2013;110:166101. doi: 10.1103/PhysRevLett.110.166101. PubMed DOI
Malijevský A., Parry A. O.. Phys. Rev. E. 2015;91:052401. doi: 10.1103/PhysRevE.91.052401. PubMed DOI
Pospíšil M., Parry A. O., Malijevský A.. Phys. Rev. E. 2022;105:064801. doi: 10.1103/PhysRevE.105.064801. PubMed DOI
Parry A. O., Pospíšil M., Malijevský A.. Phys. Rev. E. 2022;106:054802. doi: 10.1103/PhysRevE.106.054802. PubMed DOI
Malijevský A., Parry A. O., Pospíšil M.. Phys. Rev. E. 2017;96:020801. doi: 10.1103/PhysRevE.96.020801. PubMed DOI
Evans R.. Adv. Phys. 1979;28:143. doi: 10.1080/00018737900101365. DOI
Hansen, J.-P. ; McDonald, I. R. . Theory of Simple Liquids Academic; 3rd ed, New York, 2005.
Rosenfeld Y.. Phys. Rev. Lett. 1989;63:980. doi: 10.1103/PhysRevLett.63.980. PubMed DOI
Pospíšil M., Malijevský A.. Phys. Rev. E. 2022;106:024801. doi: 10.1103/PhysRevE.106.024801. PubMed DOI
Malijevský A.. J. Chem. Phys. 2014;141:184703. doi: 10.1063/1.4901128. PubMed DOI