Multiple Meniscus Depinning Transitions in Open Capillary Slits

. 2025 Dec 25 ; 129 (51) : 13325-13338. [epub] 20251214

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41392581

We study edge-induced meniscus depinning transitions in confined fluids using a combination of macroscopic theory and classical density functional theory (DFT). The study focuses on macroscopically long slit geometries of width L bounded by planar walls where the open end has an overlap D, where sharp edges introduce distinct meniscus morphologies and continuous depinning transitions. The macroscopic analysis predicts four distinct condensed states: fully pinned, partially pinned, and depinned whose stability depends sensitively on the wall separation ratio D/L and the Young contact angle θ. These transitions are second order, if the walls are partially wet, and third order if they are complete wet (θ = 0) or completely dry (θ = π). Microscopic DFT calculations confirm the existence and sequence of these morphologies in very good quantitative agreement with the macroscopic predictions, except for complete wetting, where the presence of thick adsorbed films effectively reduces the accessible slit width.

Zobrazit více v PubMed

Sullivan, D. E. ; M. M., Telo da Gama . Fluid Interfacial Phenomena, Croxton, C. A. , Ed.; Wiley, New York, 1985.

Dietrich, S. Phase Transitions and Critical Phenomena, Domb, C. ; Lebowitz, J. L. , Eds.; Academic, New York, 1988, Vol. 12.

Schick, M. Liquids and Interfaces; Chorvolin, J. , Joanny, J. F. , Zinn-Justin, J. , Eds.; Elsevier: New York, 1990.

Forgacs, G. ; Lipowsky, R. ; Nieuwenhuizen Th, M. . Phase Transitions and Critical Phenomena Vol 14, ed. by Domb, C. ; Lebowitz, J. L. , Eds.; Academic, London, 1991.

Henderson, D. Fundamentals of Inhomoheneous Fluids; Marcel Dekker: New York, 1992.

Gelb L. D., Gubbins K. E., Radhakrishnan R., Sliwinska-Bartkowiak M.. Rep. Prog. Phys. 1999;62:1573–1659. doi: 10.1088/0034-4885/62/12/201. DOI

Saam W. F.. J. Low Temp. Phys. 2009;157:77. doi: 10.1007/s10909-009-9904-0. DOI

Bonn D., Eggers J., Indekeu J., Meunier J., Rolley E.. Rev. Mod. Phys. 2009;81:739. doi: 10.1103/RevModPhys.81.739. DOI

Thomson W.. Lond. Edinb. Dubl. Phil. Mag. 1871;42:448. doi: 10.1080/14786447108640606. DOI

Gregg, S. J. ; Sing, K. S. W. . Adsorption, Surface Area and Porosity Academic Press, New York, 1982.

Cahn J. W.. J. Chem. Phys. 1977;66:3667. doi: 10.1063/1.434402. DOI

Ebner C., Saam W. F.. Phys. Rev. Lett. 1977;38:1486. doi: 10.1103/PhysRevLett.38.1486. PubMed DOI

Darbellay G. A., Yeomans J. M.. J. Phys. A: Math. Gen. 1992;25:4275. doi: 10.1088/0305-4470/25/16/006. DOI

Robbins M. O., Andelman D., Joanny J. F.. Phys. Rev. A. 1991;43:4344. doi: 10.1103/PhysRevA.43.4344. PubMed DOI

Tasinkevych M., Dietrich S.. Phys. Rev. Lett. 2006;97:106102. doi: 10.1103/PhysRevLett.97.106102. PubMed DOI

Tasinkevych M., Dietrich S.. Eur. Phys. J. E. 2007;23:117. doi: 10.1140/epje/i2007-10184-5. PubMed DOI

Hofmann T., Tasinkevych M., Checco A., Dobisz E., Dietrich S., Ocko B. M.. Phys. Rev. Lett. 2010;104:106102. doi: 10.1103/PhysRevLett.104.106102. PubMed DOI

Malijevský A.. J. Phys.: Condens. Matter. 2013;25:445006. doi: 10.1088/0953-8984/25/44/445006. PubMed DOI

Rascón C., Parry A. O., Nürnberg R., Pozzato A., Tormen M., Bruschi L., Mistura G.. J. Phys.: Condens. Matter. 2013;25:192101. doi: 10.1088/0953-8984/25/19/192101. PubMed DOI

Malijevský A., Parry A. O.. J. Phys.: Condens. Matter. 2014;26:355003. doi: 10.1088/0953-8984/26/35/355003. PubMed DOI

Singh S. L., Schimmele L., Dietrich S.. Phys. Rev. E. 2015;91:032405. doi: 10.1103/PhysRevE.91.032405. PubMed DOI

Malijevský A.. Phys. Rev. E. 2020;102:012804. doi: 10.1103/PhysRevE.102.012804. PubMed DOI

Singh S. L., Schimmele L., Dietrich S.. Phys. Rev. E. 2022;105:044803. doi: 10.1103/PhysRevE.105.044803. PubMed DOI

Hauge E. H.. Phys. Rev. A. 1992;46:4994. doi: 10.1103/PhysRevA.46.4994. PubMed DOI

Rejmer K., Dietrich S., Napirkówski M.. Phys. Rev. E. 1999;60:4027. doi: 10.1103/physreve.60.4027. PubMed DOI

Parry A. O., Rascón C., Wood A. J.. Phys. Rev. Lett. 2000;85:345. doi: 10.1103/PhysRevLett.85.345. PubMed DOI

Milchev A., Müller M., Binder K., Landau D. P.. Phys. Rev. Lett. 2003;90:136101. doi: 10.1103/PhysRevLett.90.136101. PubMed DOI

Malijevský A., Parry A. O.. Phys. Rev. Lett. 2013;110:166101. doi: 10.1103/PhysRevLett.110.166101. PubMed DOI

Malijevský A., Parry A. O.. Phys. Rev. E. 2015;91:052401. doi: 10.1103/PhysRevE.91.052401. PubMed DOI

Pospíšil M., Parry A. O., Malijevský A.. Phys. Rev. E. 2022;105:064801. doi: 10.1103/PhysRevE.105.064801. PubMed DOI

Parry A. O., Pospíšil M., Malijevský A.. Phys. Rev. E. 2022;106:054802. doi: 10.1103/PhysRevE.106.054802. PubMed DOI

Malijevský A., Parry A. O., Pospíšil M.. Phys. Rev. E. 2017;96:020801. doi: 10.1103/PhysRevE.96.020801. PubMed DOI

Evans R.. Adv. Phys. 1979;28:143. doi: 10.1080/00018737900101365. DOI

Hansen, J.-P. ; McDonald, I. R. . Theory of Simple Liquids Academic; 3rd ed, New York, 2005.

Rosenfeld Y.. Phys. Rev. Lett. 1989;63:980. doi: 10.1103/PhysRevLett.63.980. PubMed DOI

Pospíšil M., Malijevský A.. Phys. Rev. E. 2022;106:024801. doi: 10.1103/PhysRevE.106.024801. PubMed DOI

Malijevský A.. J. Chem. Phys. 2014;141:184703. doi: 10.1063/1.4901128. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...