Evaluating Spin-Orbit Effects on the Thermochemistry of Proton-Coupled Electron Transfer

. 2026 Jan 12 ; 65 (1) : 791-801. [epub] 20251222

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41429571

Many heavy transition metal compounds are active redox catalysts. Their redox potentials can be offset by differential spin-orbit coupling (SOC) effects in the case of strong perturbation of the ground-state energy of the oxidized or the reduced state. However, SOC effects are often considered negligible in the case of organometallic species, anticipating energetically well-separated, nondegenerate spin ground states for metal ions in strong ligand fields with low symmetry. We here report a rhenium(III) aminodiphosphine complex that undergoes proton-coupled electron transfer with a phenoxyl radical as a hydrogen abstractor. Experimental derivation of the PCET thermochemistry shows a deviation from coupled-cluster computations in the range of 6 kcal·mol-1. The deviation can be attributed to a sizable SOC contribution by the amine precursor, which is largely quenched in the rhenium(IV) amido product. Our case study emphasizes potential pitfalls for coupled-cluster benchmarking of the reaction energetics of heavy d-block catalysts.

Zobrazit více v PubMed

Wang C. R., Stansberry J. M., Mukundan R., Chang H.-M. J., Kulkarni D., Park A. M., Plymill A. B., Firas N. M., Liu C. P., Lang J. T., Lee J. K., Tolouei N. E., Morimoto Y., Wang C. H., Zhu G., Brouwer J., Atanassov P., Capuano C. B., Mittelsteadt C., Peng X., Zenyuk I. V.. Proton Exchange Membrane (PEM) Water Electrolysis: Cell-Level Considerations for Gigawatt-Scale Deployment. Chem. Rev. 2025;125:1257–1302. doi: 10.1021/acs.chemrev.3c00904. PubMed DOI PMC

Garrido-Barros P., Derosa J., Chalkley M. J., Peters J. C.. Tandem electrocatalytic N2 fixation via proton-coupled electron transfer. Nature. 2022;609:71–77. doi: 10.1038/s41586-022-05011-6. PubMed DOI PMC

Mato M., Cornella J.. Bismuth in Radical Chemistry and Catalysis. Angew. Chem., Int. Ed. 2024;63:e202315046. doi: 10.1002/anie.202315046. PubMed DOI

Autschbach J.. Perspective: Relativistic effects. J. Chem. Phys. 2012;136:150902. doi: 10.1063/1.3702628. PubMed DOI

Heinemann C., Schwarz H., Koch W., Dyall K. G.. Relativistic effects in the cationic platinum carbene PtCH+ 2 . J. Chem. Phys. 1996;104:4642–4652. doi: 10.1063/1.471210. DOI

Fleig, T. Relativistic String-Based Electron Correlation Methods; Springer: Dordrecht, Heidelberg, London, NY, 2010. DOI: 10.1007/978-1-4020-9975-5_10. DOI

Srnec M., Chalupsky J., Fojta M., Zendlova L., Havran L., Hocek M., Kyvala M., Rulisek L.. Effect of Spin–Orbit Coupling on Reduction Potentials of Octahedral Ruthenium­(II/III) and Osmium­(II/III) Complexes. J. Am. Chem. Soc. 2008;130:10947–10954. doi: 10.1021/ja800616s. PubMed DOI

Bím D., Rulisek L., Srnec M.. Accurate Prediction of One-Electron Reduction Potentials in Aqueous Solution by Variable-Temperature H-Atom Addition/Abstraction Methodology. J. Phys. Chem. Lett. 2016;7:7–13. doi: 10.1021/acs.jpclett.5b02452. PubMed DOI

Siegbahn P. E. M., Svensson M., Crabtree R. H.. A Theoretical Study of Mercury Photosensitized Reactions. J. Am. Chem. Soc. 1995;117:6758–6765. doi: 10.1021/ja00130a016. DOI

Carroll J. J., Weisshaar J. C., Siegbahn P. E. M., Wittborn C. A. M., Blomberg M. R. A.. An Experimental and Theoretical Study of the Gas Phase Reactions between Small Linear Alkanes and the Platinum and Iridium Atoms. J. Phys. Chem. 1995;99:14388–14396. doi: 10.1021/j100039a028. DOI

Chen K., Zhang G., Chen H., Yao J., Danovich D., Shaik S.. Spin–Orbit Coupling and Outer-Core Correlation Effects in Ir- and Pt-Catalyzed C–H Activation. J. Chem. Theory Comput. 2012;8:1641–1645. doi: 10.1021/ct3000537. PubMed DOI

Jerabek P., Vondung L., Schwerdtfeger P.. Tipping the Balance between Ligand and Metal Protonation due to Relativistic Effects: Unusually High Proton Affinity in Gold­(I) Pincer Complexes. Chem.–Eur. J. 2018;24:6047–6051. doi: 10.1002/chem.201800755. PubMed DOI

Delony D., Kinauer M., Diefenbach M., Demeshko S., Würtele C., Holthausen M. C., Schneider S.. A Terminal Iridium Oxo Complex with a Triplet Ground State. Angew. Chem., Int. Ed. 2019;58:10971–10974. doi: 10.1002/anie.201905325. PubMed DOI

Tepaske M. A., Fitterer A., Verplancke H., Delony D., Neben M. C., de Bruin B., Holthausen M. C., Schneider S.. C–H Bond Activation by Iridium­(III) and Iridium­(IV)­Oxo Complexes. Angew. Chem., Int. Ed. 2024;63:e202316729. doi: 10.1002/anie.202316729. PubMed DOI

Oelschlegel K., Heinz M., Maji S., Naumann R., Höhle Y. F. S., Alizadeh N., Finger M., Otte M., Heinze K., Holthausen M. C., Schneider S.. Photocatalytic Hydrogenation of an N2-Derived ReV Imido Complex. JACS Au. 2025;5(10):4706–4713. doi: 10.1021/jacsau.5c00525. PubMed DOI PMC

Warren J. J., Tronic T. A., Mayer J. M.. Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications. Chem. Rev. 2010;110:6961–7001. doi: 10.1021/cr100085k. PubMed DOI PMC

Agarwal R. G., Coste S. C., Groff B. D., Heuer A. M., Noh H., Parada G. A., Wise C. F., Nichols E. M., Warren J. J., Mayer J. M.. Free Energies of Proton-Coupled Electron Transfer Reagents and Their Applications. Chem. Rev. 2022;122:1–49. doi: 10.1021/acs.chemrev.1c00521. PubMed DOI PMC

Schendzielorz F., Finger M., Abbenseth J., Würtele C., Krewald V., Schneider S.. Metal-Ligand Cooperative Synthesis of Benzonitrile by Electrochemical Reduction and Photolytic Splitting of Dinitrogen. Angew. Chem., Int. Ed. 2019;131:840–844. doi: 10.1002/ange.201812125. PubMed DOI

Fritz M., Rupp S., Kiene C. I., Kisan S., Telser J., Würtele C., Krewald V., Schneider S.. Photoelectrochemical Conversion of Dinitrogen to Benzonitrile: Selectivity Control by Electrophile- versus Proton-Coupled Electron Transfer. Angew. Chem., Int. Ed. 2022;61(35):e202205922. doi: 10.1002/anie.202205922. PubMed DOI PMC

Bertini I., Luchinat C.. Relaxation. Coord. Chem. Rev. 1996;150:77–110.

Oulette E. T., Estrada J. I. A., Lussier D. J., Chakarawet K., Lohrey T. D., Karon L., Bergman R. G., Arnold J.. Spectroscopic, Magnetic, and Computational Investigations on a Series of Rhenium­(III) Cyclopentadienide β-diketiminate Halide and Pseudohalide Complexes. Organometallics. 2022;41:3128–3137. doi: 10.1021/acs.organomet.1c00516. DOI

Chatt J., Leigh G. J., Mingos D. M. P.. Configurations of some complexes of rhenium, ruthenium, osmium, rhodium, iridium, and platinum halides with mono­(tertiary phosphines) and mono­(tertiary arsines) J. Chem. Soc. A. 1969:1674–1680. doi: 10.1039/j19690001674. DOI

Randall E. W., Shaw D.. Nuclear magnetic resonance spectra of d4-cornplexes of rheniurn­(iii) and osmium­(iv) with phosphine and arsine ligands. J. Chem. Soc. A. 1969:2867–2872. doi: 10.1039/j19690002867. DOI

Mitsopoulou C. A., Mahiea N., Motevalli M., Randall E. W.. Second-order paramagnetic rhenium­(III) complexes: solid-state structure and assignment of the carbon-13 magnetic resonance spectra in solution. J. Chem. Soc., Dalton Trans. 1996:4563–4566. doi: 10.1039/DT9960004563. DOI

Bertini I., Luchinat C.. The hyperfine shift. Coord. Chem. Rev. 1996;150:29–75.

Martin B., Autschbach J.. Temperature dependence of contact and dipolar NMR chemical shifts in paramagnetic molecules. J. Chem. Phys. 2015;142:054108. doi: 10.1063/1.4906318. PubMed DOI

Gunz B. H. P., Leigh G. J.. Magnetic Susceptibilities of Some Rhenium­(iii) and Osmium­(iv) Halide Complexes; Preparation of Some New d4 Complexes. J. Chem. Soc. A. 1971:2229–2233. doi: 10.1039/j19710002229. DOI

Figgis B. N., Lewis J.. The Magnetic Properties of Transition Metal Complexes. Prog. Inorg. Chem. 1964;6:37–239. doi: 10.1002/9780470166079.ch2. DOI

Uzelmeier C. E., Bartley S. L., Fourmigué M., Rogers R., Grandinetti G., Dunbar K. R.. Reaction of Octachlorodirhenate with a Redox-Active Tetrathiafulvalene Phosphine Ligand: Spectroscopic, Magnetic, and Structural Characterization of the Unusual Paramagnetic Salt [ReCl2­(o-P2)­2]­[Re2Cl6­(o-P2)] (o-P2 = o-{P­(C6H5)­2}­2­(CH3)­2TTF) Inorg. Chem. 1998;37:6706–6713. doi: 10.1021/ic9808192. PubMed DOI

Palion-Gazda J., Gryca I., Machura B., Lloret F., Julve M.. Synthesis, crystal structure and magnetic properties of the complex [ReCl 3 (tppz)]. MeCN. RSC Adv. 2015;5:101616–101622. doi: 10.1039/C5RA21466A. PubMed DOI

Cariati F., Sgamellotti A., Morazzoni F., Valenti V.. Electronic spectra and magnetic properties of some rhenium­(IV) and rhenium­(III) complexes. Inorg. Chim. Acta. 1971;5:531–535. doi: 10.1016/S0020-1693(00)95982-6. DOI

Hay-Motherwell R. S., Wilkinson G., Hussain-Bates B., Hursthouse M. B.. Synthesis and X-ray crystal structure of oxotrimesityliridium­(V) Polyhedron. 1993;12:2009–2012. doi: 10.1016/S0277-5387(00)81474-6. DOI

Earnshaw A., Figgis B. N., Lewis J., Peacock R. D.. The magnetic properties of some d4-complexes. J. Chem. Soc. 1961:3132–3138. doi: 10.1039/jr9610003132. DOI

Abbenseth J., Delony D., Neben M. C., Würtele C., de Bruin B., Schneider S.. Interconversion of Phosphinyl Radical and Phosphinidene Complexes by Proton Coupled Electron Transfer. Angew. Chem., Int. Ed. 2019;58:6338–6341. doi: 10.1002/anie.201901470. PubMed DOI PMC

Connor G. P., Delony D., Weber J. E., Mercado B. Q., Curley J. B., Schneider S., Mayer J. M., Holland P. L.. Facile conversion of ammonia to a nitride in a rhenium system that cleaves dinitrogen. Chem. Sci. 2022;13:4010–4018. doi: 10.1039/D1SC04503B. PubMed DOI PMC

Lever A. B. P.. Electrochemical Parametrization of Metal Complex Redox Potentials, Using the Ruthenium­(III)/Ruthenium­(II) Couple To Generate a Ligand Electrochemical Series. Inorg. Chem. 1990;29:1271–1285. doi: 10.1021/ic00331a030. DOI

van Alten R. S., Wieser P. A., Finger M., Abbenseth J., Demeshko S., Würtele C., Siewert I., Schneider S.. Halide Effects in Reductive Splitting of Dinitrogen with Rhenium Pincer Complexes. Inorg. Chem. 2022;61:11581–11591. doi: 10.1021/acs.inorgchem.2c00973. PubMed DOI

Tshepelevitsh S., Kütt A., Lõkov M., Kaljurand I., Saame J., Heering A., Plieger P. G., Vianello R., Leito I.. On the Basicity of Organic Bases in Different Media. Eur. J. Org. Chem. 2019;2019:6735–6748. doi: 10.1002/ejoc.201900956. DOI

Mader E. A., Manner V. W., Markle T. F., Wu A., Franz J. A., Mayer J. M.. Trends in Ground-State Entropies for Transition Metal Based Hydrogen Atom Transfer Reactions. J. Am. Chem. Soc. 2009;131:4335–4345. doi: 10.1021/ja8081846. PubMed DOI PMC

Wise C. F., Agarwal R. G., Mayer J. M.. Determining Proton-Coupled Standard Potentials and X–H Bond Dissociation Free Energies in Nonaqueous Solvents Using Open-Circuit Potential Measurements. J. Am. Chem. Soc. 2020;142:10681–10691. doi: 10.1021/jacs.0c01032. PubMed DOI

Manner V. W., Markle T. F., Freudenthal J. H., Roth J. P., Mayer J. M.. The first crystal structure of a monomeric phenoxyl radical: 2, 4, 6-tri-tert-butylphenoxyl radical. Chem. Commun. 2008;246:256–258. doi: 10.1039/B712872J. PubMed DOI

LeMardele, FieldOptic, FieldOptic https://github.com/LeMardele/FieldOptic. 2024.

Kahn, O. Molecular Magnetism; VCH Publishers Inc.: New York, 1993.

Bill, E. ; JulX, Program for Simulation of Molecular Magnetic Data. Max-Planck Institute For Chemical Energy Conversion; JulX: Mülheim, Ruhr, 2008.

Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Petersson, G. A. ; Nakatsuji, H. , et al. Gaussian 16, Revision B.01.; Gaussian, Inc.: Wallingford CT, 2016.

Adamo C., Barone V.. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI

Grimme S., Antony J., Ehrlich S., Krieg H.. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Grimme S., Ehrlich S., Goerigk L.. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Weigend F., Ahlrichs R.. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI

Andrae D., Häußermann U., Dolg M., Stoll H., Preuß H.. Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta. 1990;77:123–141. doi: 10.1007/BF01114537. DOI

Neese F.. The ORCA program system. WIREs Comput. Mol. Sci. 2012;2:73–78. doi: 10.1002/wcms.81. DOI

Neese F., Wennmohs F., Becker U., Riplinger C.. The ORCA quantum chemistry program package. J. Chem. Phys. 2020;152:224108. doi: 10.1063/5.0004608. PubMed DOI

Neese F.. Software Update: The ORCA Program SystemVersion 6.0. WIREs Comput. Mol. Sci. 2025;15:e70019. doi: 10.1002/wcms.70019. DOI

Riplinger C., Neese F.. An efficient and near linear scaling pair natural orbital based local coupled cluster method. J. Chem. Phys. 2013;138:034106. doi: 10.1063/1.4773581. PubMed DOI

Saitow M., Becker U., Riplinger C., Valeev E. F., Neese F.. A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory. J. Chem. Phys. 2017;146:164105. doi: 10.1063/1.4981521. PubMed DOI

Guo Y., Riplinger C., Becker U., Liakos D. G., Minenkov Y., Cavallo L., Neese F.. Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD­(T)] J. Chem. Phys. 2018;148:011101. doi: 10.1063/1.5011798. PubMed DOI

Altun A., Neese F., Bistoni G.. Extrapolation to the Limit of a Complete Pair Natural Orbital Space in Local Coupled-Cluster Calculations. J. Chem. Theory Comput. 2020;16:6142–6149. doi: 10.1021/acs.jctc.0c00344. PubMed DOI PMC

Schwenke D. W.. The extrapolation of one-electron basis sets in electronic structure calculations: How it should work and how it can be made to work. J. Chem. Phys. 2005;122:014107. doi: 10.1063/1.1824880. PubMed DOI

Karton A., Martin J. M. L.. Comment on: “Estimating the Hartree–Fock limit from finite basis set calculations” [Jensen F (2005) Theor Chem Acc 113: 267] Theor. Chem. Acc. 2006;115:330–333. doi: 10.1007/s00214-005-0028-6. DOI

Neese F., Valeev E. F.. Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods? J. Chem. Theory Comput. 2011;7:33–43. doi: 10.1021/ct100396y. PubMed DOI

Truhlar D. G.. Basis set extrapolation. Chem. Phys. Lett. 1998;294:45–48. doi: 10.1016/S0009-2614(98)00866-5. DOI

Adalsteinsson H. M., Bjornsson R.. Ionization energies of metallocenes: a coupled cluster study of cobaltocene. Phys. Chem. Chem. Phys. 2023;25:4570–4587. doi: 10.1039/D2CP04715B. PubMed DOI

Adler T. B., Knizia G., Werner H.-J.. A simple and efficient CCSD­(T)-F12 approximation. J. Chem. Phys. 2007;127:221106. doi: 10.1063/1.2817618. PubMed DOI

Peterson K. A., Adler T. B., Werner H.-J.. Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B–Ne, and Al–Ar. J. Chem. Phys. 2008;128:084102. doi: 10.1063/1.2831537. PubMed DOI

Figgen D., Peterson K. A., Dolg M., Stoll H.. Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf–Pt. J. Chem. Phys. 2009;130:164108. doi: 10.1063/1.3119665. PubMed DOI

Werner H.-J., Knowles P. J., Knizia G., Manby F. R., Schütz M.. Molpro: a general-purpose quantum chemistry program package. Wiley Interdiscip. Rev. :Comput. Mol. Sci. 2012;2:242–253. doi: 10.1002/wcms.82. DOI

Werner H.-J., Knowles P. J., Manby F. R., Black J. A., Doll K., Heßelmann A., Kats D., Köhn A., Korona T., Kreplin D. A.. et al. The Molpro quantum chemistry package. J. Chem. Phys. 2020;152:144107. doi: 10.1063/5.0005081. PubMed DOI

Werner, H.-J. ; Knowles, P. J. . MOLPRO, Version 2024, a package of ab initio programs. Molpro, 2025.

Knizia G., Adler T. B., Werner H.-J.. Simplified CCSD­(T)-F12 methods: Theory and benchmarks. J. Chem. Phys. 2009;130:054104. doi: 10.1063/1.3054300. PubMed DOI

Weigend F.. Hartree–Fock exchange fitting basis sets for H to Rn. J. Comput. Chem. 2008;29:167–175. doi: 10.1002/jcc.20702. PubMed DOI

Hill J. G.. Auxiliary basis sets for density fitting second-order Møller-Plesset perturbation theory: correlation consistent basis sets for the 5d elements Hf-Pt. J. Chem. Phys. 2011;135:044105. doi: 10.1063/1.3615062. PubMed DOI

Yousaf K. E., Peterson K. A.. Optimized auxiliary basis sets for explicitly correlated Methods. J. Chem. Phys. 2008;129:184108. doi: 10.1063/1.3009271. PubMed DOI

Kritikou S., Hill J. G.. Auxiliary Basis Sets for Density Fitting in Explicitly Correlated Calculations: The Atoms H–Ar. J. Chem. Theory Comput. 2015;11:5269–5276. doi: 10.1021/acs.jctc.5b00816. PubMed DOI

Watts J. D., Gauss J., Bartlett R. J.. Coupled-cluster methods with noniterative triple excitations for restricted open-shell Hartree–Fock and other general single determinant reference functions Energies and analytical gradients. J. Chem. Phys. 1993;98:8718–8733. doi: 10.1063/1.464480. DOI

Hill J. G., Peterson K. A., Knizia G., Werner H.-J.. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets. J. Chem. Phys. 2009;131:194105. doi: 10.1063/1.3265857. PubMed DOI

Verplancke H., Diefenbach M., Lienert J. N., Ugandi M., Kitsaras M.-P., Roemelt M., Stopkowicz S., Holthausen M. C.. Another Torture Track for Quantum Chemistry: Reinvestigation of the Benzaldehyde Amidation by Nitrogen-Atom Transfer from Platinum­(II) and Palladium­(II) Metallonitrenes. Isr. J. Chem. 2023;63:e202300060. doi: 10.1002/ijch.202300060. DOI

Radoń M., Drabik G., Hodorowicz M., Szklarzewicz J.. Performance of quantum chemistry methods for a benchmark set of spin-state energetics derived from experimental data of 17 transition metal complexes (SSE17) Chem. Sci. 2024;15:20189–20204. doi: 10.1039/D4SC05471G. PubMed DOI PMC

Chung L. W., Sameera W. M. C., Ramozzi R., Page A. J., Hatanaka M., Petrova G. P., Harris T. V., Li X., Ke Z., Liu F., Li H.-B., Ding L., Morokuma K.. The ONIOM Method and Its Applications. Chem. Rev. 2015;115:5678–5796. doi: 10.1021/cr5004419. PubMed DOI

Angeli C., Cimiraglia R., Evangelisti S., Leininger T., Malrieu J. P.. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001;114:10252–10264. doi: 10.1063/1.1361246. DOI

Angeli C., Cimiraglia R., Malrieu J. P.. N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant. Chem. Phys. Lett. 2001;350:297–305. doi: 10.1016/S0009-2614(01)01303-3. DOI

Angeli C., Cimiraglia R., Malrieu J. P.. n-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 2002;117:9138–9153. doi: 10.1063/1.1515317. DOI

Heß B. A., Marian C. M., Wahlgren U., Gropen O.. A mean-field spin-orbit method applicable to correlated wavefunctions. Chem. Phys. Lett. 1996;251:365–371. doi: 10.1016/0009-2614(96)00119-4. DOI

Van Lenthe E., Baerends E. J., Snijders J. G.. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993;99:4597–4610. doi: 10.1063/1.466059. DOI

Van Lenthe E., Baerends E. J., Snijders J. G.. Relativistic total energy using regular approximations. J. Chem. Phys. 1994;101:9783–9792. doi: 10.1063/1.467943. DOI

Van Lenthe E., Snijders J. G., Baerends E. J.. The zero-order regular approximation for relativistic effects: The effect of spin–orbit coupling in closed shell molecules. J. Chem. Phys. 1996;105:6505–6516. doi: 10.1063/1.472460. DOI

Van Wüllen C.. Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J. Chem. Phys. 1998;109:392–399. doi: 10.1063/1.476576. DOI

Pantazis D. A., Chen X. Y., Landis C. R., Neese F.. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. J. Chem. Theory Comput. 2008;4:908–919. doi: 10.1021/ct800047t. PubMed DOI

Weigend F.. A fully direct RI-HF algorithm: Implementation, optimized auxiliary basis sets, demonstration of accuracy and efficiency. Phys. Chem. Chem. Phys. 2002;4:4285–4291. doi: 10.1039/b204199p. DOI

Singh S. K., Eng J., Atanasov M., Neese F.. Covalency and chemical bonding in transition metal complexes: An ab initio based ligand field perspective. Coord. Chem. Rev. 2017;344:2–25. doi: 10.1016/j.ccr.2017.03.018. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...