Integral Betti signatures of brain, climate and financial networks compared to hyperbolic, Euclidean and spherical models
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-17211S
Grantová Agentura České Republiky
21-32608S
Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004643
European Regional Development Fund
PubMed
41436823
PubMed Central
PMC12808783
DOI
10.1038/s41598-025-31700-z
PII: 10.1038/s41598-025-31700-z
Knihovny.cz E-zdroje
- Klíčová slova
- Betti curves, Data manifolds, Functional connectivity, Hyperbolic geometry, Integral Betti signatures, TDA,
- Publikační typ
- časopisecké články MeSH
This paper extends the possibility to examine the underlying curvature of data through the lens of topology by using the Betti curves, tools of Persistent Homology. We show that low-dimensional Betti curve approximations effectively distinguish not only Euclidean, but also spherical and hyperbolic geometric matrices, both from purely random matrices as well as among themselves. We proved this by analysing the behaviour of Betti curves for various geometric matrices - i.e distance matrices of points randomly distributed on manifolds given by the Euclidean space, the sphere, and the hyperbolic space. We further show that the standard approach to network construction gives rise to (spurious) spherical geometry, and document the role of sample size and dimension to assess real-world connectivity matrices. Finally, we observe that real-world datasets coming from neuroscience, finance and climate seem to exhibit a hyperbolic character. The potential confounding "hyperbologenic effect" of intrinsic low-rank modular structures is evaluated.
Department of Mathematics University of Bologna Bologna Italy
National Institute of Mental Health Topolová 748 250 67 Klecany Czech Republic
Zobrazit více v PubMed
Fefferman, C., Mitter, S. & Narayanan, H. Testing the manifold hypothesis. DOI
Carlsson, G., Ishkhanov, T., de Silva, V. & Zomorodian, A. On the local behavior of spaces of natural images. DOI
Sritharan, D., Wang, S. & Hormoz, S. Computing the Riemannian curvature of image patch and single-cell RNA sequencing data manifolds using extrinsic differential geometry. PubMed DOI PMC
Lin, B., He, X. & Ye, J. A geometric viewpoint of manifold learning,
Lin, T. & Zha, H. Riemannian manifold learning, PubMed
Bridson, M. R. & Haefliger, A.
Sharpee, T. O. An argument for hyperbolic geometry in neural circuits. PubMed DOI
Krioukov, D., Papadopoulos, F., Kitsak, M., Vahdat, A. & Boguñá, M. Hyperbolic geometry of complex networks. PubMed DOI
Keller-Ressel, M. & Nargang, S. The Hyperbolic Geometry of Financial Networks. PubMed DOI PMC
Zhou, Y., Smith, B.H. & Sharpee, T.O. Hyperbolic geometry of the olfactory space, PubMed PMC
Tadic, B., Andjelkovic, M. & Šuvakov, M. Origin of hyperbolicity in brain-to-brain coordination networks,
Whi, W., Ha, S., Kang, H. & Lee, D. S. Hyperbolic disc embedding of functional human brain connectomes using resting state fMRI. PubMed DOI PMC
Wasserman, L. Topological data analysis. DOI
Lee, H., Chung, M., Kang, H., Kim, B.-N. & Lee, D. Discriminative persistent homology of brain networks,
Caputi, L., Pidnebesna, A. & Hlinka, J. Promises and pitfalls of topological data analysis for brain connectivity analysis. PubMed DOI
Gidea, M. Topology data analysis of critical transitions in financial networks,
Dey, T. K. , Mandal, S. & Varcho, W. Improved Image Classification using Topological Persistence, in
Giusti, C., Pastalkova, E., Curto, C. & Itskov, V. Clique topology reveals intrinsic geometric structure in neural correlations. PubMed PMC
Bubenik, P., Hull, M., Patel, D. & Whittle, B. Persistent homology detects curvature. DOI
Turkes, R., Montufar, G. F. & Otter, N. On the effectiveness of persistent homology, in
Hacquard, O. & Lebovici, V. Euler characteristic tools for topological data analysis, (2023).
Lim, S., Memoli, F. & Okutan, O. B. Vietoris-Rips Persistent Homology, Injective Metric Spaces, and The Filling Radius, (2020).
Curto, C., Paik, J. & Rivin, I. Betti curves of rank one symmetric matrices, in
Fernández, X., Borghini, E., Mindlin, G. & Groisman, P. Intrinsic persistent homology via density-based metric learning.
Kahle, M. Topology of random clique complexes. DOI
Kahle, M. & Meckes, E. Limit theorems for betti numbers of random simplicial complexes. DOI
Alanis-Lobato, G. & Andrade, M. Distance distribution between complex network nodes in hyperbolic space,
Sawhney, R., Agarwal, S., Wadhwa, A. & Shah, R. Exploring the scale-free nature of stock markets: Hyperbolic graph learning for algorithmic trading, in
Agarwal, S., Sawhney, R., Thakkar, M., Nakov, P., Han, J. & Derr, T. Think: Temporal hypergraph hyperbolic network, in
Pawanesh, P., Sharma, C. & Sahni, N. Exploiting the geometry of heterogeneous networks: A case study of the indian stock market, (2024).
Guidolin, A., Desroches, M., Victor, J. D., Purpura, K. P. & R. S. Geometry of spiking patterns in early visual cortex: a topological data analytic approach, PubMed PMC
Hartman, D. & Hlinka, J. Nonlinearity in stock networks. PubMed DOI
Hlinka, J., Hartman, D., M. et al. Vejmelka, Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity,
Hlinka, J., Palus, M., Vejmelka, M., Mantini, D. & Corbetta, M. Functional connectivity in resting-state fmri: Is linear correlation sufficient?. PubMed DOI PMC
Rosas, F. E. et al. Disentangling high-order mechanisms and high-order behaviours in complex systems. DOI
Martin, E., Hlinka, J., Meinke, A., Děchtěrenko, F., Tintěra, J., Oliver, I. & Davidsen, J. Network Inference and Maximum Entropy Estimation on Information Diagrams, PubMed PMC
Bianconi, G. & Rahmede, C. Emergent hyperbolic network geometry, PubMed PMC
Boguñá, M., Krioukov, D. & Claffy, K. Navigability of complex networks,
Goldberg, S. I.
Kopal, J., Pidnebesna, A., Tomeček, D., Tintěra, J. & Hlinka, J. Typicality of Functional Connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases and preprocessing pipelines. PubMed DOI PMC
Kopal, J., Hlinka, J. & Pidnebesna, A. Typicality of Functional Connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines, PubMed PMC
Tzourio-Mazoyer, N. et al. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. PubMed DOI
Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. DOI
Hlinka, J. et al. Reliability of inference of directed climate networks using conditional mutual information. DOI
Yahoo! Finance. https://finance.yahoo.com/, (2023). Accessed: 2023-10-06.
Hatcher, A.
Tabaghi, P. & Dokmanić, I. Hyperbolic distance matrices,