Generating Molecular Diversity via Addition of Nucleophiles to Electron-Deficient [3]Dendralenes: An Exploratory Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41532821
PubMed Central
PMC12865776
DOI
10.1021/acs.joc.5c02397
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Electron-deficient dendralenes, bearing enone substructures and possessing an unfavorable disposition of like charges at the neighboring carbons, undergo nucleophilic 1,4-addition (Michael) or 1,6-addition (anti-Michael). Diverse products are obtained, including those of simple addition as well as cyclic and ortho-fused systems arising via multistep sequences, depending on the structure of the substrate and the nature of the nucleophile. Attack of a hydride at an enone fragment triggers the formation of multisubstituted pyranones and furans; furan formation was also initiated by thiolates. A notable exception is the derivative with a five-membered cyclic enone, which prefers simple additions followed by the reshuffling of the double bonds for both H- and RS- nucleophiles. By contrast, the latter enone is the only one that can react with stabilized C-nucleophiles, yielding bicyclic compounds. Domino cyclizations can also be induced by the enolization of the enone with DBU, giving mostly polysubstituted furans. However, the dendralene with a five-membered cyclic enone and its analogue with a six-membered ring behave differently: The former gives a mixture, while the latter prefers the formation of an isocoumarin derivative, which is driven by aromatization. DFT calculations have shown that the additions of thiolates are mostly governed by the thermodynamic stability of possible products arising from complex equilibrium processes.
Zobrazit více v PubMed
Hopf H.. The Dendralenes - A Neglected Group of Highly Unsaturated-Hydrocarbons. Angew. Chem., Int. Ed. 1984;23(12):948–960. doi: 10.1002/anie.198409481. DOI
Hopf H.. Dendralenes: The Breakthrough. Angew. Chem., Int. Ed. 2001;40(4):705–707. doi: 10.1002/1521-3773(20010216)40:4<705::AID-ANIE7050>3.0.CO;2-8. PubMed DOI
Hopf H., Sherburn M. S.. Dendralenes Branch Out: Cross-Conjugated Oligoenes Allow the Rapid Generation of Molecular Complexity. Angew. Chem., Int. Ed. 2012;51(10):2298–2338. doi: 10.1002/anie.201102987. PubMed DOI
Hopf, H. ; Sherburn, M. S. . Cross Conjugation: Modern Dendralene, Radialene and Fulvene Chemistry; John Wiley & Sons: Hoboken, NJ, 2016.
Payne A. D., Willis A. C., Sherburn M. S.. Practical Synthesis and Diels-Alder Chemistry of [4]Dendralene. J. Am. Chem. Soc. 2005;127(35):12188–12189. doi: 10.1021/ja053772+. PubMed DOI
Chung S.-I., Seo J., Cho C.-G.. Tandem Diels-Alder Cycloadditions of 2-Pyrone-5- acrylates for the Efficient Synthesis of Novel Tetracyclolactones. J. Org. Chem. 2006;71(17):6701–6704. doi: 10.1021/jo061119e. PubMed DOI
M. Brummond K., Mitasev B., Yan B.. Cycloaddition Reactions of Amino-Acid Derived Cross-Conjugated Trienes: Stereoselective Synthesis of Novel Heterocyclic Scaffolds. Heterocycles. 2006;70:367–388. doi: 10.3987/COM-06-S(W)36. DOI
Cergol K. M., Newton C. G., Lawrence A. L., Willis A. C., Paddon-Row M. N., Sherburn M. S.. 1,1-Divinylallene. Angew. Chem., Int. Ed. 2011;50(44):10425–10428. doi: 10.1002/anie.201105541. PubMed DOI
Lindeboom E. J., Willis A. C., Paddon-Row M. N., Sherburn M. S.. Computational and Synthetic Studies with Tetravinylethylenes. J. Org. Chem. 2014;79(23):11496–11507. doi: 10.1021/jo5021294. PubMed DOI
George J., Sherburn M. S.. Diene-Transmissive Enantioselective Diels–Alder Reactions and Sequences Involving Substituted Dendralenes. J. Org. Chem. 2019;84(22):14712–14723. doi: 10.1021/acs.joc.9b02296. PubMed DOI
Fan Y.-M., Yu L.-J., Gardiner M. G., Coote M. L., Sherburn M. S.. Enantioselective oxa-Diels–Alder Sequences of Dendralenes. Angew. Chem., Int. Ed. 2022;61(39):e202204872. doi: 10.1002/anie.202204872. PubMed DOI PMC
Kostikov R. R., Molchanov A. P.. Reaction of Dichlorocarbene with 2-Vinylbuta-1,3-diene. J. Org. Chem. USSR (English Transl.) 1975;11(2):438–449.
Bojase G., Nguyen T. V., Payne A. D., Willis A. C., Sherburn M. S.. Synthesis and properties of the ivyanes: the parent 1,1-oligocyclopropanes. Chem. Sci. 2011;2:229–232. doi: 10.1039/C0SC00500B. DOI
Zhang C., Tian J., Ren J., Wang Z.. Intramolecular Parallel [4+3] Cycloadditions of Cyclopropane 1,1-Diesters with [3]Dendralenes: Efficient Construction of [5.3.0]Decane and Corresponding Polycyclic Skeletons. Chem. - Eur. J. 2017;23(6):1231–1236. doi: 10.1002/chem.201605190. PubMed DOI
For anionic polymerization, see:
Takamura Y., Takenaka K., Toda T., Takeshita H., Miya M., Shiomi T.. Anionic Polymerization of 2-Hexyl[3]dendralene. Macromol. Chem. Phys. 2018;219(1):1700046. doi: 10.1002/macp.201700046. DOI
Takagi T., Toda T., Miya M., Takenaka K.. Stable and Highly Regioselective Anionic Polymerization of (Z)-1-Phenyl[3]dendralene. Macromolecules. 2021;54(9):4326–4332. doi: 10.1021/acs.macromol.1c00260. DOI
Desfeux C., Besnard C., Mazet C.. [n]Dendralenes as a Platform for Selective Catalysis: Ligand-Controlled Cu-Catalyzed Chemo-, Regio-, and Enantioselective Borylations. Org. Lett. 2020;22(21):8181–8187. doi: 10.1021/acs.orglett.0c01892. PubMed DOI
Antal R., Staś M., Perdomo S. M., Štemberová M., Brůža Z., Matouš P., Kratochvíl J., Růžička A., Rulíšek L., Kuneš J., Kočovský P., Andris E., Pour M.. Synthesis of highly polarized [3]dendralenes and their Diels–Alder reactions. Org. Chem. Front. 2023;10:5568–5578. doi: 10.1039/D3QO01221B. DOI
The term “dissonant compounds” was suggested by D. A. Evans for the description of such species in the 1970s. For a thorough discussion of this topic, see: Hudlický, T. ; Reed, J. W. . The Way of Synthesis; Wiley-VCH Verlag GmbH & KGaA: Wienheim, Germany, 2007; pp 186–187.
Breugst M., Detmar E., von der Heiden D.. Origin of the Catalytic Effects of Molecular Iodine: A Computational Analysis. ACS Catal. 2016;6(5):3203–3212. doi: 10.1021/acscatal.6b00447. DOI
von der Heiden D., Bozkus S., Klussmann M., Breugst M.. Reaction Mechanism of Iodine-Catalyzed Michael Additions. J. Org. Chem. 2017;82(8):4037–4043. doi: 10.1021/acs.joc.7b00445. PubMed DOI
Čebular K., Stavber S.. Molecular iodine as a mild catalyst for cross-coupling of alkenes and alcohols. Pure Appl. Chem. 2018;90(2):377–386. doi: 10.1515/pac-2017-0414. DOI
von der Heiden D., Detmar E., Kuchta R., Breugst M.. Activation of Michael Acceptors by Halogen-Bond Donors. Synlett. 2018;29(8):1307–1313. doi: 10.1055/s-0036-1591841. DOI
Marsili L. A., Pergomet J. L., Gandon V., Riveira M.. Iodine-Catalyzed Iso-Nazarov Cyclization of Conjugated Dienals for the Synthesis of 2-Cyclopentenones. Org. Lett. 2018;20(22):7298–7303. doi: 10.1021/acs.orglett.8b03229. PubMed DOI
Breugst M., von der Heiden D.. Mechanisms in Iodine Catalysis. Chem. - Eur. J. 2018;24(37):9187–9199. doi: 10.1002/chem.201706136. PubMed DOI
Tran U. P. N., Oss G., Breugst M., Detmar E., Pace D. P., Liyanto K., Nguyen T. V.. Carbonyl–Olefin Metathesis Catalyzed by Molecular Iodine. ACS Catal. 2019;9(2):912–919. doi: 10.1021/acscatal.8b03769. DOI
Oss J., Nguyen T. V.. Iodonium-Catalyzed Carbonyl–Olefin Metathesis Reactions. Synlett. 2019;30(17):1966–1970. doi: 10.1055/s-0039-1690297. DOI
Bandi V., Kavala V., Konala A., Hsu C.-H., Villuri B. K., Reddy S. R., Lin L.-C., Kuo C. W., Yao C.-F.. Synthesis of Polysubstituted Cyclopentene and Cyclopenta[b]carbazole Analogues from Unsymmetrical 4-Arylidene-3,6-diarylhex-2-en-5-ynal and Indole Derivatives via an Iodine Mediated Electrocyclization Reaction. J. Org. Chem. 2019;84(6):3036–3044. doi: 10.1021/acs.joc.8b02168. PubMed DOI
Koenig J. J., Arndt T., Gildemeister N., Neudörfl J.-M., Breugst M.. Iodine-Catalyzed Nazarov Cyclizations. J. Org. Chem. 2019;84(12):7587–7605. doi: 10.1021/acs.joc.9b01083. PubMed DOI
Hamlin T. A., Fernández I., Bickelhaupt F. M.. How Dihalogens Catalyze Michael Addition Reactions. Angew. Chem., Int. Ed. 2019;58(26):8922–8926. doi: 10.1002/anie.201903196. PubMed DOI PMC
Hamlin T. A., Bickelhaupt F. M., Fernández I.. The Pauli Repulsion-Lowering Concept in Catalysis. Acc. Chem. Res. 2021;54(8):1972–1981. doi: 10.1021/acs.accounts.1c00016. PubMed DOI
Arndt T., Wagner P. K., Koenig J. J., Breugst M.. Iodine-Catalyzed Diels-Alder Reactions. ChemCatChem. 2021;13(12):2922–2930. doi: 10.1002/cctc.202100342. DOI
Bulfield D., Huber S. M.. Halogen Bonding in Organic Synthesis and Organocatalysis. Chem. - Eur. J. 2016;22(41):14434–14450. doi: 10.1002/chem.201601844. PubMed DOI
Kolář M. H., Hobza P.. Computer modelling of halogen bonds and other σ-hole interactions. Chem. Rev. 2016;116(9):5155–5187. doi: 10.1021/acs.chemrev.5b00560. PubMed DOI
Costa P. J.. The halogen bond: Nature and applications. Phys. Sci. Rev. 2017;2(11):20170136. doi: 10.1515/psr-2017-0136. DOI
Breugst M., von der Heiden D., Schmauck J.. Novel Noncovalent Interactions in Catalysis: A Focus on Halogen, Chalcogen, and Anion-π Bonding. Synthesis. 2017;49(15):3224–3236. doi: 10.1055/s-0036-1588838. DOI
Kesharwani M. K., Manna D., Sylvetsky N., Martin J. M. L.. The X40 × 10 Halogen Bonding Benchmark Revisited: Surprising Importance of (n–1)d Subvalence Correlation. J. Phys. Chem. A. 2018;122(8):2184–2197. doi: 10.1021/acs.jpca.7b10958. PubMed DOI
Breugst M., Koenig J. J.. σ-Hole Interactions in Catalysis. Eur. J. Org. Chem. 2020;2020(34):5473–5487. doi: 10.1002/ejoc.202000660. DOI
Mallada B., Gallardo A., Lamanec M., de la Torre B., Špirko V., Hobza P., Jelínek P.. Real-space imaging of anisotropic charge of σ-hole by means of Kelvin probe force microscopy. Science. 2021;374:863–877. doi: 10.1126/science.abk1479. PubMed DOI
Ballini R., Palmieri A.. Formation of Carbon-Carbon Double Bonds: Recent Developments via Nitrous Acid Elimination (NAE) from Aliphatic Nitro Compounds. Adv. Synth. Catal. 2019;361(22):5070–5097. doi: 10.1002/adsc.201900563. DOI
Roy S.. An Unusual Route to Synthesize Indolizines through a Domino SN2/Michael Addition Reaction Between 2-Mercaptopyridine and Nitroallylic Acetates. Eur. J. Org. Chem. 2019;2019(4):765–769. doi: 10.1002/ejoc.201801426. DOI
Chen W. T., Luo F., Wu Y., Cen J., Shao J. A., Yu Y. P.. Efficient access to fluorescent benzofuro[3,2-b]carbazoles via TFA-promoted cascade annulations of sulfur ylides, 2-hydroxy-β-nitrostyrenes and indoles. Org. Chem. Front. 2020;7:873–878. doi: 10.1039/D0QO00137F. DOI
Thomas B. E., Kollman P. A.. An ab initio molecular orbital study of the first step of the catalytic mechanism of thymidylate synthase: the Michael addition of sulfur and oxygen nucleophiles. J. Org. Chem. 1995;60:8375–8381. doi: 10.1021/jo00131a012. DOI
Raycroft M. A. R., Racine K. É., Rowley C. N., Keillor J. W.. Mechanisms of Alkyl and Aryl Thiol Addition to N-Methylmaleimide. J. Org. Chem. 2018;83:11674–11685. doi: 10.1021/acs.joc.8b01638. PubMed DOI
Awoonor-Williams E., Isley W. C., Dale S. G., Johnson E. R., Yu H., Becke A. D., Roux B., Rowley C. N.. Quantum Chemical Methods for Modeling Covalent Modification of Biological Thiols. J. Comput. Chem. 2020;41:427–438. doi: 10.1002/jcc.26064. PubMed DOI
Costa A. M., Bosch L., Petit E., Vilarrasa J.. Computational Study of the Addition of Methanethiol to 40+ Michael Acceptors as a Model for the Bioconjugation of Cysteines. J. Org. Chem. 2021;86:7107–7118. doi: 10.1021/acs.joc.1c00349. PubMed DOI PMC
Watt S. K. I., Charlebois J. G., Rowley C. N., Keillor J. W.. A mechanistic study of thiol addition to N-acryloylpiperidine. Org. Biomol. Chem. 2023;21:2204–2212. doi: 10.1039/D2OB02223K. PubMed DOI
Liu R., Vázquez-Montelongo E. A., Ma S., Shen J.. Quantum Descriptors for Predicting and Understanding the Structure–Activity Relationships of Michael Acceptor Warheads. J. Chem. Inf. Model. 2023;63:4912–4923. doi: 10.1021/acs.jcim.3c00720. PubMed DOI PMC
Ma S., Patel H., Peeples C. A., Shen J.. QM/MM Simulations of Afatinib-EGFR Addition: The Role of β-Dimethylaminomethyl Substitution. J. Chem. Theory Comput. 2024;20:5528–5538. doi: 10.1021/acs.jctc.4c00290. PubMed DOI PMC
Brown J. S., Ruttinger A. W., Vaidya A. J., Alabi C. A., Clancy P.. Decomplexation as a rate limitation in the thiol-Michael addition of N-acrylamides. Org. Biomol. Chem. 2020;18:6364–6377. doi: 10.1039/D0OB00726A. PubMed DOI
Berne D., Lemouzy S., Guiffrey P., Caillol S., Ladmiral V., Manoury E., Poli R., Leclerc E.. Catalyst-Free Thia-Michael Addition to α-Trifluoromethylacrylates for 3D Network Synthesis. Chem. - Eur. J. 2023;29:e202203712. doi: 10.1002/chem.202203712. PubMed DOI
Roseli R. B., Keto A. B., Krenske E. H.. Mechanistic aspects of thiol additions to Michael acceptors: Insights from computations. WIREs Comput. Mol. Sci. 2023;13:e1636. doi: 10.1002/wcms.1636. DOI
Smith J. M., Jami Alahmadi Y., Rowley C. N.. Range-Separated DFT Functionals are Necessary to Model Thio-Michael Additions. J. Chem. Theory Comput. 2013;9:4860–4865. doi: 10.1021/ct400773k. PubMed DOI
Ting J. Y. C., Roseli R. B., Krenske E. H.. How does cross-conjugation influence thiol additions to enones? A computational study of thiol trapping by the naturally occurring divinyl ketones zerumbone and α-santonin. Org. Biomol. Chem. 2020;18:1426–1435. doi: 10.1039/C9OB02709B. PubMed DOI
Takagi T., Toda T., Miya M., Takenaka K.. DFT study on the anionic polymerization of phenyl-substituted [3]dendralene derivatives: reactivities of monomer and chain end carbanion. Polym. J. 2022;54:643–652. doi: 10.1038/s41428-022-00615-1. DOI
Mardirossian N., Head-Gordon M.. ωB97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 2016;144(21):214110. doi: 10.1063/1.4952647. PubMed DOI
Weigend F., Ahlrichs R.. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005;7:3297–3305. doi: 10.1039/b508541a. PubMed DOI
Rappoport D., Furche F.. Property-optimized Gaussian basis sets for molecular response calculations. J. Chem. Phys. 2010;133(13):134105. doi: 10.1063/1.3484283. PubMed DOI
Vosko S. H., Wilk L., Nusair M.. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980;58(8):1200–1211. doi: 10.1139/p80-159. DOI
Lee C., Yang W., Parr R. G.. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Becke A. D.. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98(7):5648–5652. doi: 10.1063/1.464913. DOI
Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J.. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994;98(45):11623–11627. doi: 10.1021/j100096a001. DOI
Grimme S., Antony J., Ehrlich S., Krieg H.. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132(15):154104. doi: 10.1063/1.3382344. PubMed DOI
Grimme S., Ehrlich S., Goerigk L.. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011;32(7):1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Knizia G.. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 2013;9(11):4834–4843. doi: 10.1021/ct400687b. PubMed DOI
Knizia G., Klein J. E. M. N.. Electron Flow in Reaction Mechanisms Revealed from First Principles. Angew. Chem., Int. Ed. 2015;54(18):5518–5522. doi: 10.1002/anie.201410637. PubMed DOI
Chatani S., Nair D. P., Bowman C. N.. Relative reactivity and selectivity of vinyl sulfones and acrylates towards the thiol–Michael addition reaction and polymerization. Polym. Chem. 2013;4:1048–1055. doi: 10.1039/C2PY20826A. DOI
Shiobara Y., Asakawa Y., Kodama M., Takemoto T.. Zedoarol, 13-Hydroxygermacrone and Curzeone, Three Sesquiterpenoids from Curcuma zedoaria . Phytochemistry. 1986;25(6):1351–1353. doi: 10.1016/S0031-9422(00)81288-1. DOI
Jogia M. K., Andersen R. J., Parkanyi L., Clardy J., Dublin H. T., Sinclair A. R. E.. Crotofolane Diterpenoids from the African Shrub Croton dichogamus Pax. J. Org. Chem. 1989;54(7):1654–1657. doi: 10.1021/jo00268a029. DOI
Kupchan S. M., Shizuri Y., Baxter R. L., Haynes H. R.. Gnididione, a New Furanosesquiterpene from Gnidia latifolia . J. Org. Chem. 1977;42(2):348–350. doi: 10.1021/jo00422a040. PubMed DOI
Nakamura H., Kobayashi J., Kobayashi M., Ohizumi Y., Hirata Y.. Xestoquinone. A Novel Cardiotonic Marine Natural Product Isolated From The Okinawan Sea Sponge Xestospongia sapra . Chem. Lett. 1985;14(6):713–716. doi: 10.1246/cl.1985.713. DOI
Hikino H., Agatsuma K., Takemoto T.. Structure of Curzerenone, Epicurzerenone, and Isofuranogermacrene (Curzerene) Tetrahedron Lett. 1968;9(24):2855–2858. doi: 10.1016/S0040-4039(00)75646-2. DOI
McPherson D. D., Che Ch.-T., Cordell G. A., Doel Soejarto D., Pezzuto J. M., Fong H. H. S.. Diterpenoids from Caesalpinia pulcherrima . Phytochemistry. 1985;25(1):167–170. doi: 10.1016/S0031-9422(00)94522-9. DOI
Macias F. A., Fronczek F. R., Fischer N. H.. Menthofurans from Calamintha ashei and the Absolute Configuration of Desacetylcalaminthone. Phytochemistry. 1989;28(1):79–82. doi: 10.1016/0031-9422(89)85013-7. DOI
Ryu S. Y., Lee Ch. O., Choi S. U.. In Vitro Cytotoxicity of Tanshinones from Salvia miltiorrhiza . Planta Med. 1997;63(4):339–342. doi: 10.1055/s-2006-957696. PubMed DOI
Syu W.-J., Shen Ch.-Ch., Don M.-J., Ou J.-Ch., Lee G.-H., Sun Ch.-M.. Cytotoxicity of Curcuminoids and Some Novel Compounds from Curcuma zedoaria . J. Nat. Prod. 1998;61(12):1531–1534. doi: 10.1021/np980269k. PubMed DOI