Assessment of long-read strategies for the enrichment of clinically relevant breakpoints in lymphomas: towards a diagnostic implementation

. 2026 Jan 21 ; 105 (2) : 47. [epub] 20260121

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41563484
Odkazy

PubMed 41563484
PubMed Central PMC12823746
DOI 10.1007/s00277-026-06754-2
PII: 10.1007/s00277-026-06754-2
Knihovny.cz E-zdroje

Recurrent chromosomal translocations are hallmarks of many hematological malignancies, including lymphomas and leukemias. Accurate breakpoint detection is essential for diagnostics, treatment optimization, and disease monitoring. Long-read sequencing (Oxford Nanopore Technologies) enables unambiguous mapping and translocation identification. We designed a Cas9-based enrichment panel targeting common translocations in lymphoid malignancies. To accommodate both well-defined and promiscuous translocation partners, we employed single-side and dual-side sequencing strategies. Using well-established lymphoid cell lines, we benchmarked three enrichment approaches: (i) Cas9 read-out, (ii) Cas9 excision with multiplexing, and (iii) adaptive sampling. Cas9-mediated enrichment achieved superior on-target coverage, particularly in densely targeted regions (such as the IGH locus), while single-probe targets showed lower coverage depth. Adaptive sampling offered higher throughput, flexibility, and better pore occupancy, however with limited breakpoint detection. Cas9 excision has been demonstrated as a fast and reliable method to detect canonical translocation partners in clinical lymphoma samples. Our findings indicate that long-read enrichment strategies are suitable for targeting breakpoint hotspots, although the choice of approach depends heavily on the laboratory's specific goal. We propose a decision algorithm for selecting the optimal method based on experimental and clinical needs: Cas9-mediated enrichment suits focused diagnostic intent, while adaptive sampling is preferable for broader research use.

Zobrazit více v PubMed

Cosenza MR, Rodriguez-Martin B, Korbel JO (2022) Structural variation in cancer: role, prevalence, and mechanisms. Annu Rev Genomics Hum Genet 23:123–152 PubMed DOI

Hurles ME, Dermitzakis ET, Tyler-Smith C (2008) The functional impact of structural variation in humans. Trends Genet 24:238–245 PubMed DOI PMC

Krem MM, Press OW, Horwitz MS, Tidwell T (2015) Mechanisms and clinical applications of chromosomal instability in lymphoid malignancy. Br J Haematol 171:13–28 PubMed DOI

Liu D, Lieber MR (2022) The mechanisms of human lymphoid chromosomal translocations and their medical relevance. Crit Rev Biochem Mol Biol 57:227–243 PubMed DOI PMC

Zheng J (2013) Oncogenic chromosomal translocations and human cancer (review). Oncol Rep 30:2011–2019 PubMed DOI

Mitelman F, Johansson B, Mertens F (2025) Mitelman database of chromosome aberrations and gene fusions in cancer [Internet]. Available from: https://mitelmandatabase.isb-cgc.org

Kosugi S, Terao C (2024) Comparative evaluation of SNVs, indels, and structural variations detected with short- and long-read sequencing data. Hum Genome Var 11:18 PubMed DOI PMC

Nordlund J, Marincevic-Zuniga Y, Cavelier L et al (2020) Refined detection and phasing of structural aberrations in pediatric acute lymphoblastic leukemia by linked-read whole-genome sequencing. Sci Rep 10:2512 PubMed DOI PMC

Ho C, Rodig SJ (2015) Immunohistochemical markers in lymphoid malignancies: protein correlates of molecular alterations. Semin Diagn Pathol 32:381–391 PubMed DOI

Ruminy P, Jardin F, Picquenot JM et al (2006) Two patterns of chromosomal breakpoint locations on the immunoglobulin heavy-chain locus in B-cell lymphomas with t(3;14)(q27;q32): relevance to histology. Oncogene 25:4947–4954 PubMed DOI

Boyle EM, Walker BA, Wardell C et al (2014) B-cell malignancies: capture-sequencing strategies for identification of gene rearrangements and translocations into immunoglobulin gene loci. Blood Lymphat Cancer 4:107-119.

Stangl C, De Blank S, Renkens I et al (2020) Partner independent fusion gene detection by multiplexed CRISPR-Cas9 enrichment and long read nanopore sequencing. Nat Commun 11:2861 PubMed DOI PMC

Geyer J, Opoku KB, Lin J et al (2025) Real-time genomic characterization of pediatric acute leukemia using adaptive sampling. Leukemia 39, 1069–1077. PubMed PMC

Kato S, Sato-Otsubo A, Nakamura W et al (2024) Genome profiling with targeted adaptive sampling long-read sequencing for pediatric leukemia. Blood Cancer J 14:145 PubMed DOI PMC

Custom Alt-RTM CRISPR-Cas9 guide RNA designer tool. https://www.idtdna.com/site/order/designtool/index/CRISPR_CUSTOM}

Nambiar M, Kari V, Raghavan SC (2008) Chromosomal translocations in cancer. Biochim Biophys Acta 1786:139–152 PubMed

Dyer SC, Austine-Orimoloye O, Azov AG et al (2025) Ensembl 2025. Nucleic Acids Res 53:D948–D957 PubMed DOI PMC

epi2me adaptive sampling BED checker. https://epi2me.nanoporetech.com/bed-bugs/}

De Coster W, Rademakers R (2023) Nanopack2: population-scale evaluation of long-read sequencing data. Bioinformatics 39:btad311 PubMed DOI PMC

Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100 PubMed DOI PMC

Danecek P, Bonfield JK, Liddle J et al (2021) Twelve years of SAMtools and BCFtools. Gigascience 10:giab008 PubMed DOI PMC

Cretu Stancu M, Van Roosmalen MJ, Renkens I et al (2017) Mapping and phasing of structural variation in patient genomes using nanopore sequencing. Nat Commun 8:1326 PubMed DOI PMC

Smolka M, Paulin LF, Grochowski CM et al (2024) Detection of mosaic and population-level structural variants with Sniffles2. Nat Biotechnol 42:1571–1580 PubMed DOI PMC

Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26 PubMed DOI PMC

Sollier E, Heilmann J, Gerhauser C et al (2024) Figeno: multi-region genomic figures with long-read support. Bioinformatics 40:btae354 PubMed DOI PMC

Rausch T, Zichner T, Schlattl A et al (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28:i333–i339 PubMed DOI PMC

Romagnoli S, Bartalucci N, Vannucchi AM (2023) Resolving complex structural variants via nanopore sequencing. Front Genet 14:1213917 PubMed DOI PMC

Meyer C, Larghero P, Almeida Lopes B et al (2023) The KMT2A recombinome of acute leukemias in 2023. Leukemia 37:988–1005 PubMed DOI PMC

Möker P, Zur Stadt U, Zimmermann M et al (2022) Characterization of IG-MYC-breakpoints and their application for quantitative minimal disease monitoring in high-risk pediatric Burkitt-lymphoma and -leukemia. Leukemia 36:2343–2346 PubMed DOI PMC

De Clercq G, Vantomme L, Dewaele B et al (2024) Full characterization of unresolved structural variation through long-read sequencing and optical genome mapping. Sci Rep 14:29142 PubMed DOI PMC

Pei Y, Tanguy M, Giess A et al (2024) A comparison of structural variant calling from short-read and nanopore-based whole-genome sequencing using optical genome mapping as a benchmark. Genes 15:925 PubMed DOI PMC

Scholz V, Schönrock V, Erdmann H et al (2024) Parallel in-depth analysis of repeat expansions: an updated Clin-CATS workflow for nanopore R10 flow cells. bioRxiv 2024.11.05.622099 } 10.1101/2024.11.05.622099}

de Boer EN, Scheper AJ, Hendriksen D et al (2025) Nanopore long-read sequencing as a first-tier diagnostic test to detect repeat expansions in neurological disorders. Int J Mol Sci 26:2850 PubMed DOI PMC

Steiert TA, Parra G, Gut M et al (2023) A critical spotlight on the paradigms of FFPE-DNA sequencing. Nucleic Acids Res 51:7143–7162 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...