Súhrn Detská chirurgia je lekárska špecializácia, ktorá sa zameriava na diagnostiku, liečbu a pooperačnú starostlivosť o deti s vrodenými a získanými anomáliami a chorobami. Cieľom detských chirurgov je zabezpečiť, aby deti dostali najlepšiu možnú starostlivosť a aby sa minimalizovali riziká a komplikácie spojené s chirurgickými zákrokmi. Súčasní detskí chirurgovia čelia mnohým výzvam, vrátane malému počtu detí s vrodenými vývojovými chybami; ekonomické tlaky a snaha o zvýšenie efektivity vedú k znižovaniu času stráveného na jednotlivých operáciách, čo môže obmedzovať možnosť dôkladného tréningu mladých chirurgov. Tieto výzvy vyžadujú inovatívne prístupy a neustále zlepšovanie vzdelávacích a tréningových metód. Minimálne invazívna chirurgia sa stala významnou súčasťou detskej chirurgie, prinášajúc benefity ako rýchlejšie zotavenie, menšie operačné rany a nižšie riziko infekcie. Avšak, minimálne invazívna detská chirurgia je technicky náročná a vyžaduje excelentnú technickú zručnosť. Potreba udržiavať a zlepšovať chirurgické zručnosti vyžaduje neustály tréning. Súčasné vzdelávacie metódy sa čoraz viac spoliehajú na simulačné technológie, aby sa zlepšila kvalita a bezpečnosť tréningu s čo najnižším rizikom pre pacientov. Integrácia technológie 3D tlače a obrazových dát z CT a MR skenov priniesla nové možnosti na tvorbu vysoko realistických simulačných modelov pre minimálne invazívnu chirurgiu. Tieto modely presne replikujú prostredie, s ktorým sa stretávame napr. pri novorodeneckej chirurgii. V tomto článku uvádzame vlastné skúsenosti s vývojom a tvorbou 3D tlačených syntetických modelov určených na tréning torakoskopickej operácie atrézie pažeráka s tracheoezofageálnou fistulou. Cieľom tohto súhrnného článku je poskytnúť aktuálny prehľad literatúry venujúcej sa syntetickým 3D tlačeným modelom určeným pre tréning minimálne invazívnej detskej chirurgie.
Summary Pediatric surgery is a medical specialty focused on the diagnosis, treatment, and postoperative care of children with congenital and acquired anomalies and diseases. The goal of pediatric surgeons is to ensure that children receive the best possible care while minimizing the risks and complications associated with surgical procedures. Contemporary pediatric surgeons face many challenges, including a decline in the number of children with congenital developmental defects, economic pressures, and efforts to increase efficiency, leading to reduced time spent on individual surgeries. This can limit the opportunity for thorough training of young surgeons. These challenges require innovative approaches and continuous improvement in educational and training methods. Minimally invasive surgery has become a significant part of pediatric surgery, offering benefits such as faster recovery, smaller surgical wounds, and lower risk of infection. However, minimally invasive pediatric surgery is technically demanding and requires excellent technical skills. The need to maintain and improve surgical skills demands ongoing training. Current educational methods increasingly rely on simulation technologies to enhance the quality and safety of training without risk to patients. The integration of 3D printing technology and imaging data from CT and MRI scans has opened new possibilities for creating highly realistic simulation models for minimally invasive surgery. These models accurately replicate the environment encountered in procedures like neonatal surgery. In this article, we present our experience with the development and creation of 3D-printed synthetic models designed for training thoracoscopic surgery of esophageal atresia with tracheoesophageal fistula. The aim of this review article is to provide an up-to-date overview of the literature on synthetic 3D-printed models designed for training in minimally invasive pediatric surgery.
BACKGROUND: Cross-sectional anatomy is a challenging yet a vital foundation to clinical practice. The traditional teachings of gross anatomy cadaveric dissections do not cover adequate training of recognizing anatomical structures on CT, MRI and sonographic cross-sections. New modern technologies are emerging as teaching tools in anatomy aiming to deliver visual interactive experience. The Visible Human Project provides a library of cross-sectional images compiled from cryosectioned body donors that was utilized by modern technologies such as the virtual dissection table (Anatomage) in constructing 3D software applications visualizing the internal composition of the human body virtually. Hereby, this article explores an integrative approach utilizing the Visible Human Project based applications and basic radiological modalities. PURPOSE: The purpose of our newly implemented teaching approach was to test and assure technology fitness to the medical curriculum and its potential influence on students' performance in learning gross as well as cross-sectional anatomy in much depth. BASIC PROCEDURES: A three years (2021-2024) observational study was conducted by implanting a practical cross-sectional anatomy optional course by selectively utilizing Anatmage interactively beside CT, MRI and ultrasound practice. The performance of 50 participants was evaluated in the form of a written test comprised of labeling of ten cross-sectional images and drawing of two cross-section schemes. Their optional course test scores were compared to their obligatory anatomy subject test scores; and to a non-participants control group of 50 retrospective obligatory anatomy subject test scores. In addition, the participants' attitude toward the training lessons was assessed through a survey focused on satisfaction level, competence and ability to recognize structures on radiological images. MAIN FINDINGS: The participants reported a high level of practical engagement. The test scores in the anatomy obligatory subject were positively influenced by this implemented practical course. Students showed improved test scores in the standardized labeling keyword questions, while the scheme questions showed discrepancy. PRINCIPAL CONCLUSIONS: Integrating Visible Human Project based applications with radiological modalities showed positive efficacy on the students' engagement and learning performance. Inevitably, cadaveric dissection and prosection remain the cornerstone of gross anatomy education. Integrating both modalities of teaching would excel students' practical skills in applied clinical anatomy.
- MeSH
- anatomie průřezová * výchova MeSH
- anatomie výchova MeSH
- disekce výchova MeSH
- dospělí MeSH
- kurikulum * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mladý dospělý MeSH
- mrtvola MeSH
- projekty vizualizace člověka * MeSH
- průřezové studie MeSH
- školy lékařské MeSH
- studenti lékařství MeSH
- studium lékařství pregraduální metody MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
Úvod: 3D tisk, koncept starý přes 40 let, nachází díky technologickému pokroku stále širší uplatnění v klinické praxi. Ve FN Ostrava je využíván k vytváření anatomických modelů konkrétních pacientů před chirurgickými výkony na základě dat ze zobrazovacích vyšetření. Kazuistiky: 3D tisk nachází uplatnění jako doplněk ke konvenčním zobrazovacím metodám s cílem zhotovit morfologicky přesné modely anatomických struktur konkrétních pacientů. Tyto modely slouží především pro předoperační přípravu v elektivní břišní, cévní a hrudní chirurgii. Využívají se rovněž při plánování osteosyntéz složitých zlomenin a korekčních osteotomií. Vícebarevný tisk, přestože zvyšuje časovou náročnost procesu, umožňuje lepší přehlednost a diferenciaci jednotlivých anatomických struktur v rámci jednoho modelu. Diskuze: 3D modely poskytují lepší prostorovou orientaci a rozpoznání operovaných struktur než 2D obrazy, což přispívá k lepším výsledkům zákroků. Jejich přínos je potvrzen studiemi napříč obory, od kardiochirurgie po traumatologii. Závěr: Po odstranění počátečních překážek se 3D tisk stal spolehlivou součástí arzenálu Chirurgické kliniky FN Ostrava pro elektivní chirurgii. I když 3D tisk nepředstavuje univerzální odpověď na všechny výzvy, kterým v medicíně čelíme, jeho role je v řadě indikovaných případů velmi přínosná a perspektivní.
Introduction: 3D printing, a concept over 40 years old, is finding broader application in clinical practice thanks to technological advancements. At University Hospital Ostrava, 3D printing is utilized to create anatomically accurate models of specific patients before surgical procedures based on imaging data. Case series: 3D printing is employed as a complement to conventional imaging methods to produce morphologically precise models of anatomical structures of individual patients. These models primarily serve for preoperative planning in elective abdominal, vascular, and thoracic surgery. They are also used in planning osteosynthesis of complex fractures and corrective osteotomies. Multicolor printing, although increasing the process‘s time demands, allows better clarity and differentiation of individual anatomical structures within a single model. Discussion: Compared to 2D images, 3D models provide better spatial orientation and awareness of the operated structures, contributing to improved surgical outcomes. The benefits of 3D printing in preoperative planning and patient education are confirmed by studies across the fields ranging from cardiac surgery to traumatology. Conclusion: After overcoming initial challenges, 3D printing has become a reliable component of the surgical arsenal at University Hospital Ostrava for elective surgery. While 3D printing does not represent a universal answer to all medical challenges, its role is highly beneficial and promising in many indicated cases.
PURPOSE: Endoscopically assisted sagittal strip craniotomy with subsequent cranial orthosis is a frequently used surgical approach for non-syndromic sagittal synostosis. Originally, this technique involved a wide sagittal strip craniectomy with bilateral wedge osteotomies. More recent studies suggest omitting wedge osteotomies, achieving similar outcomes. The controversy surrounding wedge osteotomies and our efforts to refine our technique led us to create models and evaluate the mechanical impact of wedge osteotomies. METHODS: We conducted a 3D-print study involving preoperative CT scans of non-syndromic scaphocephaly patients undergoing minimally invasive-assisted remodelation (MEAR) surgery. The sagittal strip collected during surgery underwent thickness measurement, along with a 3-point bending test. These results were used to determine printing parameters for accurately replicating the skull model. Model testing simulated gravitational forces during the postoperative course and assessed lateral expansion under various wedge osteotomy conditions. RESULTS: The median sagittal strip thickness was 2.00 mm (range 1.35-3.46 mm) and significantly positively correlated (p = 0.037) with the median force (21.05 N) of the 3-point bending test. Model testing involving 40 models demonstrated that biparietal wedge osteotomies significantly reduced the force required for lateral bone shift, with a trend up to 5-cm-long cuts (p = 0.007). Additional cuts beyond this length or adding the occipital cut did not provide further significant advantage (p = 0.1643; p = 9.6381). CONCLUSION: Biparietal wedge osteotomies reduce the force needed for lateral expansion, provide circumstances for accelerated head shape correction, and potentially reduce the duration of cranial orthosis therapy.
- MeSH
- 3D tisk * MeSH
- anatomické modely MeSH
- endoskopie metody MeSH
- kojenec MeSH
- kraniosynostózy * chirurgie MeSH
- kraniotomie metody MeSH
- lidé MeSH
- osteotomie * metody MeSH
- počítačová rentgenová tomografie MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The Achilles tendon (AT) is the strongest tendon of the human body. The knowledge of AT anatomy is a basic prerequisite for the successful treatment of acute and chronic lesions. The structure of the AT results from a complicated fusion of three parts: the tendons of the medial and lateral gastrocnemius and the soleus muscles. From proximal to distal, the tendon fibers twist in a long spiral into a roughly 90° internal rotation. The tendon is narrowest approximately 5-7 cm above its calcaneal insertion and from there it expands again. The topography of the footprints of the individual AT components reflects the tendon origins. The anterior (deep) AT fibers insert into the middle third of the posterior aspect of the calcaneal tuberosity, the posterior (superficial) fibers pass over the calcaneal tuberosity and fuse with the plantar aponeurosis. A deep calcaneal bursa is interposed between the calcaneal tuberosity and the AT anterior surface. The AT has no synovial sheath but is covered along its entire length with a sliding connective tissue, the paratenon which is, however, absent on its anterior surface. The AT is supplied by the posterior tibial artery (PTA) and the peroneal artery (PA). Motor innervation of the triceps surae muscle is provided by fibers of the tibial nerve which also gives off sensitive fibers for the AT. Sensitive innervation is also provided via the sural nerve. The sural nerve crosses the AT approximately 11 cm proximal to the calcaneal tuberosity. The forces acting on the AT during exercise may be up to 12 times the body weight. Physiological stretching of AT collagen fibers ranges between 2% and 4% of its length. Stretching of the tendon over 4% results in microscopic failure and stretching beyond 8% in macroscopic failure.
- MeSH
- Achillova šlacha * anatomie a histologie MeSH
- anatomické modely MeSH
- kosterní svaly anatomie a histologie inervace MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Three-dimensional (3D) printing has gained popularity across various domains but remains less integrated into medical surgery due to its complexity. Existing literature primarily discusses specific applications, with limited detailed guidance on the entire process. The methodological details of converting Computed Tomography (CT) images into 3D models are often found in amateur 3D printing forums rather than scientific literature. To address this gap, we present a comprehensive methodology for converting CT images of bone fractures into 3D-printed models. This involves transferring files in Digital Imaging and Communications in Medicine (DICOM) format to stereolithography format, processing the 3D model, and preparing it for printing. Our methodology outlines step-by-step guidelines, time estimates, and software recommendations, prioritizing free open-source tools. We also share our practical experience and outcomes, including the successful creation of 72 models for surgical planning, patient education, and teaching. Although there are challenges associated with utilizing 3D printing in surgery, such as the requirement for specialized expertise and equipment, the advantages in surgical planning, patient education, and improved outcomes are evident. Further studies are warranted to refine and standardize these methodologies for broader adoption in medical practice.
- MeSH
- 3D tisk * MeSH
- anatomické modely MeSH
- fraktury kostí * diagnostické zobrazování chirurgie MeSH
- lidé MeSH
- počítačová rentgenová tomografie * metody MeSH
- radiologické informační systémy organizace a řízení MeSH
- traumatologie MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: Endoscopic ear surgery has become a popular operative approach to treat middle ear diseases. Surgeons use either 0° or 30° endoscopes worldwide. The main aim of the work was to compare the properties of these two types of endoscopes. MATERIAL AND METHODS: Since this type of evaluation is hard to perform in vivo during the actual surgery, we designed 3D printed temporal bone models with different levels of complexity. The evaluation of endoscopes was based on image analysis or visibility of anatomical structures. RESULTS: The results show that a 30° endoscope offers a view of lateral walls from 4 mm distance, contrary to a 0° endoscope which cannot see lateral walls from this distance at all. On the other hand, visible area of the anterior wall is up to 40 % larger using 0° endoscope, compared to 30° endoscope. Angled endoscope distorts the picture and leads to the deterioration of the image. At commonly used distances above 5 mm from middle ear structures, resolution and image distortion is comparable between both endoscopes. CONCLUSIONS: Our results do not offer a definitive opinion on which endoscope is better for ear surgery. Both types of endoscopes have advantages and disadvantages, and the choice depends on the surgeon's personal preference and on the type of planned procedure.
- MeSH
- 3D tisk * MeSH
- anatomické modely * MeSH
- design vybavení MeSH
- endoskopie * metody MeSH
- endoskopy * MeSH
- lidé MeSH
- otologické chirurgické výkony * metody přístrojové vybavení MeSH
- spánková kost chirurgie MeSH
- střední ucho * chirurgie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- MeSH
- 3D tisk přístrojové vybavení MeSH
- dentální technologie MeSH
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- malokluze diagnostické zobrazování MeSH
- materiály pro zubní otisky MeSH
- mladiství MeSH
- zobrazování trojrozměrné MeSH
- zubní modely * klasifikace MeSH
- zubní technika otisková klasifikace přístrojové vybavení MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- hodnotící studie MeSH
Úvod a cíl: Modely chrupu jsou ve stomatologii široce používanou pomůckou. Přenos situace v ústní dutině mimo ústa pacienta ve formě modelů chrupu nám přináší informace v oblasti diagnostiky, plánování způsobu léčby a pro plánování výroby stomatologických produktů. Modely chrupu lze využít v každém stomatologickém oboru. Zcela neodmyslitelně jsou spjaty s protetikou, ortodoncií a maxilofaciální chirurgií. Cílem tohoto přehledového článku je seznámit čtenáře s přínosy intraorálního skenování ve spojení s 3D tiskem. Dále popsat jejich základní principy a prezentovat nejvýhodnější technologie 3D tisku pro výrobu stomatologických produktů z poznatků dostupných v současné literatuře. Materiál a metodika: Vyhledání a průzkum literatury byly zaměřeny na intraorální skenování a 3D tisk. Použity byly databáze PubMed, Scopus a Ebsco. Pro následné zařazení do přehledu byla zásadní aplikovatelnost ve stomatologii, zahrnutí kontrolní skupiny a stáří článku do pěti let. Závěr: Ze zpracovaných studií vyplývá, že technologie přímého intraorálního skenování a 3D tisku jsou již dnes dobře klinicky použitelné a v budoucnosti lze očekávat jejich další rozvoj pro užívání v každodenní praxi.
Introduction and aim: Dental models are widely used in dentistry. The transmission of oral cavity situation outside patient's mouth brings us information in the field of diagnostics, treatment planning, and the fabrication planning of dental products. Dental models can be used in any dental field. They are particularly linked to prosthodontics, orthodontics, and maxillofacial surgery. The aim of this article is to report the benefits of the intraoral scanning in conjuction with 3D printing to the reader. Also, it describes their basic principles and presents the most useful technologies of 3D printing for production in dentistry according to the current literature. Materials and methods: The literature search and survey were focused on intraoral scanning and 3D printing. PubMed, Scopus, and Ebsco databases were used to find the articles. Their applicability in dentistry, the inclusion of a control group, and the age of the article within five years were essential for their subsequent selection. Conclusion: The included studies show that the technologies of direct intraoral scanning and 3D printing are already clinically usable today, and in the future we can expect their further development for everyday practice.