Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.
- MeSH
- crista neuralis MeSH
- forkhead transkripční faktory metabolismus genetika MeSH
- homeodoménové proteiny * metabolismus genetika MeSH
- mezoderm * metabolismus MeSH
- myši MeSH
- nervus trigeminus * MeSH
- vibrissae * inervace růst a vývoj embryologie MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Donor nerve selection is a crucial factor in determining clinical outcomes of facial reanimation. Although dual innervation approaches using two neurotizers have shown promise, there is a lack of evidence-based comparison in the literature. Furthermore, no animal model of dual reinnervation has yet been published. This study aimed to establish such a model and verify its technical and anatomical feasibility by performing dual-innervated reanimation approaches in Wistar rats. METHODS: Fifteen Wistar rats were divided into four experimental groups and one control group. The sural nerve was exposed and used as a cross-face nerve graft (CFNG), which was then anastomosed to the contralateral buccal branch of the facial nerve through a subcutaneous tunnel on the forehead. The CFNG, the masseteric nerve (MN), and the recipient nerve were coapted in one or two stages. The length and width of the utilized structures were measured under an operating microscope. Return of whisker motion was visually confirmed. RESULTS: Nine out of the eleven rats that underwent surgery survived the procedure. Whisker motion was observed in all experimental animals, indicating successful reinnervation. The mean duration of the surgical procedures did not differ significantly between the experimental groups, ensuring similar conditions for all groups. CONCLUSIONS: Our experimental study confirmed that the proposed reanimation model in Wistar rats is anatomically and technically feasible, with a high success rate, and shows good prospects for future experiments.
- MeSH
- faciální paralýza * chirurgie MeSH
- krysa rodu rattus MeSH
- modely nemocí na zvířatech MeSH
- nervus facialis * chirurgie fyziologie MeSH
- nervus suralis chirurgie MeSH
- potkani Wistar MeSH
- regenerace nervu * fyziologie MeSH
- vibrissae fyziologie inervace MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH