PURPOSE: Spinal cord gray-matter imaging is valuable for a number of applications, but remains challenging. The purpose of this work was to compare various MRI protocols at 1.5 T, 3 T, and 7 T for visualizing the gray matter. METHODS: In vivo data of the cervical spinal cord were collected from nine different imaging centers. Data processing consisted of automatically segmenting the spinal cord and its gray matter and co-registering back-to-back scans. We computed the SNR using two methods (SNR_single using a single scan and SNR_diff using the difference between back-to-back scans) and the white/gray matter contrast-to-noise ratio per unit time. Synthetic phantom data were generated to evaluate the metrics performance. Experienced radiologists qualitatively scored the images. We ran the same processing on an open-access multicenter data set of the spinal cord MRI (N = 267 participants). RESULTS: Qualitative assessments indicated comparable image quality for 3T and 7T scans. Spatial resolution was higher at higher field strength, and image quality at 1.5 T was found to be moderate to low. The proposed quantitative metrics were found to be robust to underlying changes to the SNR and contrast; however, the SNR_single method lacked accuracy when there were excessive partial-volume effects. CONCLUSION: We propose quality assessment criteria and metrics for gray-matter visualization and apply them to different protocols. The proposed criteria and metrics, the analyzed protocols, and our open-source code can serve as a benchmark for future optimization of spinal cord gray-matter imaging protocols.
- MeSH
- White Matter * diagnostic imaging MeSH
- Cervical Cord * MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Spinal Cord diagnostic imaging MeSH
- Multicenter Studies as Topic MeSH
- Image Processing, Computer-Assisted methods MeSH
- Gray Matter diagnostic imaging MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH