Opioid receptors (ORs) have been observed as homo- and heterodimers, but it is unclear if the dimers are stable under physiological conditions, and whether monomers or dimers comprise the predominant fraction in a cell. Here, we use three live-cell imaging approaches to assess dimerization of ORs at expression levels that are 10-100 × smaller than in classical biochemical assays. At membrane densities around 25/µm2, a split-GFP assay reveals that κOR dimerizes, while µOR and δOR stay monomeric. At receptor densities < 5/µm2, single-molecule imaging showed no κOR dimers, supporting the concept that dimer formation depends on receptor membrane density. To directly observe the transition from monomers to dimers, we used a single-molecule assay to assess membrane protein interactions at densities up to 100 × higher than conventional single-molecule imaging. We observe that κOR is monomeric at densities < 10/µm2 and forms dimers at densities that are considered physiological. In contrast, µOR and δOR stay monomeric even at the highest densities covered by our approach. The observation of long-lasting co-localization of red and green κOR spots suggests that it is a specific effect based on OR dimerization and not an artefact of coincidental encounters.
- MeSH
- analýza jednotlivých buněk metody MeSH
- buněčná membrána metabolismus MeSH
- konformace proteinů MeSH
- krysa rodu rattus MeSH
- multimerizace proteinu MeSH
- myši MeSH
- receptory opiátové delta chemie metabolismus MeSH
- receptory opiátové mu chemie metabolismus MeSH
- zobrazení jednotlivé molekuly metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Lithium (Li) is a typical mood stabilizer and the first choice for treatment of bipolar disorder (BD). Despite an extensive clinical use of Li, its mechanisms of action remain widely different and debated. In this work, we studied the time-course of the therapeutic Li effects on ouabain-sensitive Na+/K+-ATPase in forebrain cortex and hippocampus of rats exposed to 3-day sleep deprivation (SD). We also monitored lipid peroxidation as malondialdehyde (MDA) production. In samples of plasma collected from all experimental groups of animals, Li concentrations were followed by ICP-MS. The acute (1 day), short-term (7 days) and chronic (28 days) treatment of rats with Li resulted in large decrease of Na+/K+-ATPase activity in both brain parts. At the same time, SD of control, Li-untreated rats increased Na+/K+-ATPase along with increased production of MDA. The SD-induced increase of Na+/K+-ATPase and MDA was attenuated in Li-treated rats. While SD results in a positive change of Na+/K+-ATPase, the inhibitory effect of Li treatment may be interpreted as a pharmacological mechanism causing a normalization of the stress-induced shift and return the Na+/K+-ATPase back to control level. We conclude that SD alone up-regulates Na+/K+-ATPase together with increased peroxidative damage of lipids. Chronic treatment of rats with Li before SD, protects the brain tissue against this type of damage and decreases Na+/K+-ATPase level back to control level.
- MeSH
- antimanika farmakologie terapeutické užití MeSH
- hipokampus účinky léků metabolismus MeSH
- kompetitivní vazba účinky léků MeSH
- krysa rodu rattus MeSH
- lithiumkarbonát farmakologie MeSH
- malondialdehyd metabolismus MeSH
- ouabain metabolismus MeSH
- peroxidace lipidů účinky léků MeSH
- potkani Wistar MeSH
- přední mozek účinky léků enzymologie metabolismus MeSH
- sodíko-draslíková ATPasa metabolismus MeSH
- spánková deprivace farmakoterapie enzymologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Opioid addiction is recognized as a chronic relapsing brain disease resulting from repeated exposure to opioid drugs. Cellular and molecular mechanisms underlying the ability of organism to return back to the physiological norm after cessation of drug supply are not fully understood. The aim of this work was to extend our previous studies of morphine-induced alteration of rat forebrain cortex protein composition to the hippocampus. Rats were exposed to morphine for 10 days and sacrificed 24 h (groups +M10 and -M10) or 20 days after the last dose of morphine (groups +M10/-M20 and -M10/-M20). The six altered proteins (≥2-fold) were identified in group (+M10) when compared with group (-M10) by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). The number of differentially expressed proteins was increased to thirteen after 20 days of the drug withdrawal. Noticeably, the altered level of α-synuclein, β-synuclein, α-enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was also determined in both (±M10) and (±M10/-M20) samples of hippocampus. Immunoblot analysis of 2D gels by specific antibodies oriented against α/β-synucleins and GAPDH confirmed the data obtained by 2D-DIGE analysis. Label-free quantification identified nineteen differentially expressed proteins in group (+M10) when compared with group (-M10). After 20 days of morphine withdrawal (±M10/-M20), the number of altered proteins was increased to twenty. We conclude that the morphine-induced alteration of protein composition in rat hippocampus after cessation of drug supply proceeds in a different manner when compared with the forebrain cortex. In forebrain cortex, the total number of altered proteins was decreased after 20 days without morphine, whilst in hippocampus, it was increased.
- MeSH
- abstinenční syndrom patologie MeSH
- časové faktory MeSH
- hipokampus účinky léků patologie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- morfin škodlivé účinky MeSH
- mozková kůra účinky léků patologie MeSH
- opioidní analgetika škodlivé účinky MeSH
- poruchy spojené s užíváním opiátů patologie MeSH
- potkani Wistar MeSH
- proteomika MeSH
- regulace genové exprese účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Morphine- and Concanavalin A-induced changes of protein composition of rat spleen lymphocytes were determined by high-resolution proteomic analysis, gel-free, label-free quantification, MaxLFQ. Stimulation by Con A resulted in a major reorganization of spleen cell protein composition evidenced by increased expression level of 94 proteins; 101 proteins were down-regulated (>2-fold). Interestingly, among proteins that were up-regulated to the largest extent were the prototypical brain proteins as a neuron specific enolase, synapsin-1, brain acid-soluble protein-1 and myelin basic protein. Morphine-induced change was limited to no more than 5 up-regulated and 18 down-regulated proteins (>2-fold).
- MeSH
- aktivace lymfocytů účinky léků genetika MeSH
- konkanavalin A farmakologie MeSH
- krysa rodu rattus MeSH
- lymfocyty účinky léků metabolismus MeSH
- morfin farmakologie MeSH
- potkani Wistar MeSH
- proteom účinky léků MeSH
- proteomika metody MeSH
- regulace genové exprese účinky léků MeSH
- slezina cytologie MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Regulation of μ-, δ- and κ-opioid receptor protein level in spleen lymphocytes when stimulated by mitogen is not known. To answer the question whether these cells do express opioid receptor (OR) proteins, primary, fresh rat spleen lymphocytes were prepared and stimulated for 48 h with mitogenic dose of Con A. The unstimulated lymphocytes did not express μ- and δ-OR proteins in detectable amounts, however, stimulation with Con A resulted in appearance of clearly detectable immunoblot signals of both μ-OR and δ-OR. κ-OR were detected already in primary cells and increased 2.4-fold in Con A-stimulated cells. These results were supported by data obtained by flow cytometry analysis indicating a dramatic increase in number of μ-, δ- and κ-OR expressing cells after mitogen stimulation. The newly synthesized μ-, δ- and κ-OR in Con A-stimulated spleen lymphocytes were present in the cells interior and not functionally mature, at least in terms of their ability to enhance activity of trimeric G proteins determined by three different protocols of agonist-stimulated, high-affinity [35S]GTPγS binding assay. The up-regulation of μ-, δ- and κ-OR was associated with specific decrease of their cognate trimeric G proteins, Gi1α/Gi2α; the other Gα and Gβ subunits were unchanged. The level of β-arrestin-1/2 was also decreased in Con A-stimulated splenocytes. We conclude that up-regulation of OR expression level in spleen lymphocytes by Con A proceeds in conjunction with down-regulation of their intracellular signaling partners, Gi1α/Gi2α proteins and β-arrestin-1/2. These regulatory proteins are expressed in high amounts already in unstimulated cells and decreased by mitogen stimulation.
- MeSH
- konkanavalin A farmakologie MeSH
- krysa rodu rattus MeSH
- lymfocyty účinky léků metabolismus MeSH
- mitogeny farmakologie MeSH
- potkani Wistar MeSH
- receptory opiátové delta biosyntéza účinky léků MeSH
- receptory opiátové kappa biosyntéza účinky léků MeSH
- receptory opiátové mu biosyntéza účinky léků MeSH
- slezina cytologie účinky léků metabolismus MeSH
- upregulace MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Morphine is an analgesic drug therapeutically administered to relieve pain. However, this drug has numerous side effects, which include impaired healing and regeneration after injuries or tissue damages. It suggests negative effects of morphine on stem cells which are responsible for tissue regeneration. Therefore, we studied the impact of morphine on the properties and functional characteristics of human bone marrow-derived mesenchymal stem cells (MSCs). The presence of μ-, δ- and κ-opioid receptors (OR) in untreated MSCs, and the enhanced expression of OR in MSCs pretreated with proinflammatory cytokines, was demonstrated using immunoblotting and by flow cytometry. Morphine modified in a dose-dependent manner the MSC phenotype, inhibited MSC proliferation and altered the ability of MSCs to differentiate into adipocytes or osteoblasts. Furthermore, morphine rather enhanced the expression of genes for various immunoregulatory molecules in activated MSCs, but significantly inhibited the production of the vascular endothelial growth factor, hepatocyte growth factor or leukemia inhibitory factor. All of these observations are underlying the selective impact of morphine on stem cells, and offer an explanation for the mechanisms of the negative effects of opioid drugs on stem cells and regenerative processes after morphine administration or in opioid addicts.
- MeSH
- buněčná diferenciace účinky léků MeSH
- lidé MeSH
- mezenchymální kmenové buňky metabolismus patologie MeSH
- morfin farmakologie MeSH
- osteoblasty metabolismus MeSH
- receptory opiátové metabolismus MeSH
- tukové buňky metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Chronic exposure of mammalian organism to morphine results in adaption to persistent high opioid tone through homeostatic adjustments. Our previous results indicated that in the frontal brain cortex (FBC) of rats exposed to morphine for 10 days, such a compensatory adjustment was detected as large up-regulation of adenylylcyclases I (8-fold) and II (2.5-fold). The other isoforms of AC (III-IX) were unchanged. Importantly, the increase of ACI and ACII was reversible as it disappeared after 20 days of morphine withdrawal. Changes of down-stream signaling molecules such as G proteins and adenylylcyclases should respond to and be preceded by primary changes proceeding at receptor level. Therefore in our present work, we addressed the problem of reversibility of the long-term morphine effects on μ-, δ- and κ-OR protein levels in FBC. METHODS: Rats were exposed to increasing doses of morphine (10-40 mg/kg) for 10 days and sacrificed either 24 h (group +M10) or 20 days (group +M10/-M20) after the last dose of morphine in parallel with control animals (groups -M10 and -M10/-M20). Post-nuclear supernatant (PNS) fraction was prepared from forebrain cortex, resolved by 1D-SDS-PAGE under non-dissociated (-DTT) and dissociated (+DTT) conditions, and analyzed for the content of μ-, δ- and κ-OR by immunoblotting with C- and N-terminus oriented antibodies. RESULTS: Significant down-regulation of δ-OR form exhibiting Mw ≈ 60 kDa was detected in PNS prepared from both (+M10) and (+M10/-M20) rats. However, the total immunoblot signals of μ-, δ- and κ-OR, respectively, were unchanged. Plasma membrane marker Na, K-ATPase, actin and GAPDH were unaffected by morphine in both types of PNS. Membrane-domain marker caveolin-1 and cholesterol level increased in (+M10) rats and this increase was reversed back to control level in (+M10/-M20) rats. CONCLUSIONS: In FBC, prolonged exposure of rats to morphine results in minor (δ-OR) or no change (μ- and κ-OR) of opioid receptor content. The reversible increases of caveolin-1 and cholesterol levels suggest participation of membrane domains in compensatory responses during opioid withdrawal. GENERAL SIGNIFICANCE: Analysis of reversibility of morphine effect on mammalian brain.
- MeSH
- 2D gelová elektroforéza MeSH
- abstinenční syndrom * MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- krysa rodu rattus MeSH
- morfin aplikace a dávkování škodlivé účinky MeSH
- potkani Wistar MeSH
- přední mozek metabolismus MeSH
- receptory opiátové delta metabolismus MeSH
- receptory opiátové kappa metabolismus MeSH
- receptory opiátové mu metabolismus MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH