Labile redox-active iron ions have been implicated in various neurodegenerative disorders, including the Parkinson's disease (PD). Iron chelation has been successfully used in clinical practice to manage iron overload in diseases such as thalassemia major; however, the use of conventional iron chelators in pathological states without systemic iron overload remains at the preclinical investigative level and is complicated by the risk of adverse outcomes due to systemic iron depletion. In this study, we examined three clinically-used chelators, namely, desferrioxamine, deferiprone and deferasirox and compared them with experimental agent salicylaldehyde isonicotinoyl hydrazone (SIH) and its boronate-masked prochelator BSIH for protection of differentiated PC12 cells against the toxicity of catecholamines 6-hydroxydopamine and dopamine and their oxidation products. All the assayed chelating agents were able to significantly reduce the catecholamine toxicity in a dose-dependent manner. Whereas hydrophilic chelator desferrioxamine exerted protection only at high and clinically unachievable concentrations, deferiprone and deferasirox significantly reduced the catecholamine neurotoxicity at concentrations that are within their plasma levels following standard dosage. SIH was the most effective iron chelator to protect the cells with the lowest own toxicity of all the assayed conventional chelators. This favorable feature was even more pronounced in prochelator BSIH that does not chelate iron unless its protective group is cleaved in disease-specific oxidative stress conditions. Hence, this study demonstrated that while iron chelation may have general neuroprotective potential against catecholamine auto-oxidation and toxicity, SIH and BSIH represent promising lead molecules and warrant further studies in more complex animal models.
- MeSH
- buňky PC12 MeSH
- chelátory železa * farmakologie MeSH
- deferasirox farmakologie MeSH
- deferipron farmakologie MeSH
- deferoxamin farmakologie MeSH
- dopamin farmakologie MeSH
- katecholaminy farmakologie MeSH
- krysa rodu rattus MeSH
- oxidační stres MeSH
- oxidopamin farmakologie MeSH
- přetížení železem * MeSH
- železo farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Aroylhydrazone iron chelators such as salicylaldehyde isonicotinoyl hydrazone (SIH) protect various cells against oxidative injury and display antineoplastic activities. Previous studies have shown that a nitro-substituted hydrazone, namely, NHAPI, displayed markedly improved plasma stability, selective antitumor activity, and moderate antioxidant properties. In this study, we prepared four series of novel NHAPI derivatives and explored their iron chelation activities, anti- or pro-oxidant effects, protection against model oxidative injury in the H9c2 cell line derived from rat embryonic cardiac myoblasts, cytotoxicities to the corresponding noncancerous H9c2 cells, and antiproliferative activities against the MCF-7 human breast adenocarcinoma and HL-60 human promyelocytic leukemia cell lines. Nitro substitution had both negative and positive effects on the examined properties, and we identified new structure-activity relationships. Naphthyl and biphenyl derivatives showed selective antiproliferative action, particularly in the breast adenocarcinoma MCF-7 cell line, where they exceeded the selectivity of the parent compound NHAPI. Of particular interest is a compound prepared from 2-hydroxy-5-methyl-3-nitroacetophenone and biphenyl-4-carbohydrazide, which protected cardiomyoblasts against oxidative injury at 1.8 ± 1.2 μM with 24-fold higher selectivity than SIH. These compounds will serve as leads for further structural optimization and mechanistic studies.
- MeSH
- antioxidancia chemická syntéza chemie farmakologie toxicita MeSH
- chelátory železa chemická syntéza chemie farmakologie toxicita MeSH
- hydrazony chemická syntéza chemie farmakologie toxicita MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- molekulární struktura MeSH
- nádorové buněčné linie MeSH
- oxidační stres účinky léků MeSH
- protinádorové látky chemická syntéza chemie farmakologie toxicita MeSH
- radioizotopy železa MeSH
- stabilita léku MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Publikační typ
- abstrakt z konference MeSH
A series of benzaldehyde and salicylaldehyde-S-benzylisothiosemicarbazones was synthesized and tested against 12 different strains of mycobacteria, Gram-positive and Gram-negative bacteria, and the significant selectivity toward mycobacteria was proved. Twenty-eight derivatives were evaluated for the inhibition of isocitrate lyase, which is a key enzyme of the glyoxylate cycle necessary for latent tuberculosis infection, and their iron-chelating properties were investigated. Two derivatives, 5-bromosalicylaldehyde-S-(4-fluorobenzyl)-isothiosemicarbazone and salicylaldehyde-S-(4-bromobenzyl)-isothiosemicarbazone, influenced the isocitrate lyase activity and caused a better inhibition at 10 μmol/L than 3-nitropropionic acid, a standard inhibitor. The compounds were also found to act as exogenous chelators of iron, which is an obligate cofactor for many mycobacterial enzymes. Due to their low cytotoxicity, together with the activity against isocitrate lyase and the ability to sequester iron ions, the compounds belong to potential antibiotics with the main effect on mycobacteria.
- MeSH
- antibakteriální látky chemická syntéza chemie farmakologie MeSH
- antituberkulotika chemická syntéza chemie farmakologie MeSH
- gramnegativní bakterie účinky léků MeSH
- grampozitivní bakterie účinky léků MeSH
- inhibitory enzymů chemická syntéza chemie farmakologie MeSH
- isocitrátlyasa antagonisté a inhibitory MeSH
- Mycobacterium účinky léků MeSH
- racionální návrh léčiv MeSH
- thiosemikarbazony chemická syntéza chemie farmakologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Rutin, quercetin-3-O-rutinoside, a natural flavonol glycoside, has shown various in vitro benefits with potential use treating human diseases, especially cardiovascular system disorders. Antioxidant properties are assumed to underlie the majority of these benefits. Yet rutin pro-oxidant properties have been reported as well. Our research group has recently shown aggravating effects on isoprenaline (ISO)-induced cardiotoxicity in Wistar:Han rats after 24 hours. METHODS: This study was designed to examine in more detail the reasons for the negative effects of rutin (11.5 and 46 mg/kg, i.v.) after administration of ISO (100 mg/kg, s.c.) in rats within 2 hours of continuous experiment and in the H9c2 cardiomyoblast-derived cell line. RESULTS: Like our previous findings, rutin did not (11.5 or 46 mg/kg, i.v.) reduce the ISO-induced mortality within 2 hours although the lower dose significantly reduced cardiac troponin T (cTnT) and partly improved the histological findings. In contrast, the higher dose increased the mortality in comparison with solvent (1.26% w/v sodium bicarbonate). This was not caused by any specific haemodynamic disturbances. It appears to be associated with oxidative stress as rutin enhanced intracellular reactive oxygen species formation in vitro and had the tendency to increase it in vivo. CONCLUSIONS: Rutin, likely due to its pro-oxidative effects, can exacerbate catecholamine cardiotoxicity depending on the dose used.
- MeSH
- buněčné linie MeSH
- dinoprost analogy a deriváty krev MeSH
- elektrokardiografie MeSH
- glutathion krev MeSH
- injekce intravenózní MeSH
- isoprenalin škodlivé účinky MeSH
- Kaplanův-Meierův odhad MeSH
- kardiotoxicita etiologie mortalita MeSH
- myokard patologie MeSH
- potkani Wistar MeSH
- reaktivní formy kyslíku metabolismus MeSH
- rutin aplikace a dávkování škodlivé účinky farmakokinetika MeSH
- srdce účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Iron and copper release participates in the myocardial injury under ischemic conditions and hence protection might be achieved by iron chelators. Data on copper chelation are, however, sparse. The effect of the clinically used copper chelator D-penicillamine in the catecholamine model of acute myocardial injury was tested in cardiomyoblast cell line H9c2 and in Wistar Han rats. D-Penicillamine had a protective effect against catecholamine-induced injury both in vitro and in vivo. It protected H9c2 cells against the catecholamine-induced viability loss in a dose-dependent manner. In animals, both intravenous D-penicillamine doses of 11 (low) and 44 mg/kg (high) decreased the mortality caused by s.c. isoprenaline (100 mg/kg) from 36% to 14% and 22%, respectively. However, whereas the low D-penicillamine dose decreased the release of cardiac troponin T (specific marker of myocardial injury), the high dose resulted in an increase. Interestingly, the high dose led to a marked elevation in plasma vitamin C. This might be related to potentiation of oxidative stress, as suggested by additional in vitro experiments with D-penicillamine (iron reduction and the Fenton reaction). In conclusion, D-penicillamine has protective potential against catecholamine-induced cardiotoxicity; however the optimal dose selection seems to be crucial for further application.
- MeSH
- buněčné linie MeSH
- chelátory železa farmakologie MeSH
- deferoxamin farmakologie MeSH
- ionty MeSH
- kardiotonika chemie farmakologie MeSH
- katecholaminy MeSH
- koncentrace vodíkových iontů MeSH
- myokard patologie MeSH
- penicilamin chemie farmakologie MeSH
- potkani Wistar MeSH
- troponin T metabolismus MeSH
- viabilita buněk účinky léků MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Catecholamines may undergo iron-promoted oxidation resulting in formation of reactive intermediates (aminochromes) capable of redox cycling and reactive oxygen species (ROS) formation. Both of them induce oxidative stress resulting in cellular damage and death. Iron chelation has been recently shown as a suitable tool of cardioprotection with considerable potential to protect cardiac cells against catecholamine-induced cardiotoxicity. However, prolonged exposure of cells to classical chelators may interfere with physiological iron homeostasis. Prochelators represent a more advanced approach to decrease oxidative injury by forming a chelating agent only under the disease-specific conditions associated with oxidative stress. Novel prochelator (lacking any iron chelating properties) BHAPI [(E)-Ń-(1-(2-((4-(4,4,5,5-tetramethyl-1,2,3-dioxoborolan-2-yl)benzyl)oxy)phenyl)ethylidene) isonicotinohydrazide] is converted by ROS to active chelator HAPI with strong iron binding capacity that efficiently inhibits iron-catalyzed hydroxyl radical generation. Our results confirmed redox activity of oxidation products of catecholamines isoprenaline and epinephrine, that were able to activate BHAPI to HAPI that chelates iron ions inside H9c2 cardiomyoblasts. Both HAPI and BHAPI were able to efficiently protect the cells against intracellular ROS formation, depletion of reduced glutathione and toxicity induced by catecholamines and their oxidation products. Hence, both HAPI and BHAPI have shown considerable potential to protect cardiac cells by both inhibition of deleterious catecholamine oxidation to reactive intermediates and prevention of ROS-mediated cardiotoxicity.
- MeSH
- adrenalin antagonisté a inhibitory toxicita MeSH
- biokatalýza MeSH
- buněčné linie MeSH
- chelátory železa farmakologie MeSH
- glutathion metabolismus MeSH
- hydroxylový radikál metabolismus MeSH
- isoprenalin antagonisté a inhibitory toxicita MeSH
- kardiotonika farmakologie MeSH
- katecholaminy antagonisté a inhibitory toxicita MeSH
- krysa rodu rattus MeSH
- kyseliny boronové farmakologie MeSH
- lidé MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- oxidační stres účinky léků MeSH
- prekurzory léčiv farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- semikarbazony farmakologie MeSH
- sloučeniny boru farmakologie MeSH
- železo chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH
- Publikační typ
- abstrakt z konference MeSH