Laccases are multi-copper oxidases that play an important role in the biodegradation of phenolic compounds, lignin, dye, and wastes. Here, we report the screening of potential laccase-producing indigenous bacterial isolates and subsequent optimization of laccase production using crop residues as cheap supplementary energy sources. Among 16 bacterial isolates, seven were selected based on the appearance of reddish-brown bacterial colonies and guaiacol oxidation assay after 10 days of incubation at 37 °C. The maximum laccase activity (2.755 U/mL) was observed for bacterial isolate WR2. Response surface methodology (RSM) was used to maximize laccase production from WR2, identified as Pseudomonas stutzeri. Plackett-Burman design (PBD) was employed to design production runs involving various factors including time, pH, inoculum, wheat straw, cotton stalk, wheat bran, rice straw, copper sulfate, sugarcane bagasse, yeast extract, and peptone. The interactions of different factors were analyzed from the responses (laccase enzyme activity, etc.) in 12 experimental runs. In experimental run 4, the maximum laccase enzymatic activity (1.86 U/mL) was achieved after a 10-day incubation with wheat straw (1%) and cotton stalk (1%) at pH 6.8 and 37 °C, and high-degree lignin degradation was evident from a substantial reduction in the FTIR aromatic stretching peak of the degraded biomass.
- Klíčová slova
- Biodegradation, Biomass, Enzyme activity, Laccase, Lignin, Response surface methodology,
- Publikační typ
- časopisecké články MeSH
PURPOSE: The purpose of this study was to expand the genetic architecture of neurodevelopmental disorders, and to characterize the clinical features of a novel cohort of affected individuals with variants in ZNF142, a C2H2 domain-containing transcription factor. METHODS: Four independent research centers used exome sequencing to elucidate the genetic basis of neurodevelopmental phenotypes in four unrelated families. Following bioinformatic filtering, query of control data sets, and secondary variant confirmation, we aggregated findings using an online data sharing platform. We performed in-depth clinical phenotyping in all affected individuals. RESULTS: We identified seven affected females in four pedigrees with likely pathogenic variants in ZNF142 that segregate with recessive disease. Affected cases in three families harbor either nonsense or frameshifting likely pathogenic variants predicted to undergo nonsense mediated decay. One additional trio bears ultrarare missense variants in conserved regions of ZNF142 that are predicted to be damaging to protein function. We performed clinical comparisons across our cohort and noted consistent presence of intellectual disability and speech impairment, with variable manifestation of seizures, tremor, and dystonia. CONCLUSION: Our aggregate data support a role for ZNF142 in nervous system development and add to the emergent list of zinc finger proteins that contribute to neurocognitive disorders.
- Klíčová slova
- ataxia, childhood apraxia of speech, developmental delay, dolichocephaly, homozygosity mapping,
- MeSH
- dítě MeSH
- dospělí MeSH
- dystonie genetika MeSH
- fenotyp MeSH
- kohortové studie MeSH
- lidé MeSH
- mentální retardace genetika MeSH
- missense mutace MeSH
- mladiství MeSH
- mutace MeSH
- neurovývojové poruchy genetika MeSH
- poruchy řeči genetika MeSH
- rodina MeSH
- rodokmen MeSH
- sekvenování exomu MeSH
- trans-aktivátory genetika metabolismus MeSH
- výpočetní biologie metody MeSH
- vývojové poruchy u dětí genetika MeSH
- záchvaty genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- trans-aktivátory MeSH
- ZNF143 protein, human MeSH Prohlížeč
Endo-glucanase (cellulase) and xylanase have high industrial demand due to their vast application in industrial processes. This study reports statistical based experimental optimization for co-production of endo-glucanase and xylanase from Bacillus sonorensis BD92. Response surface methodology (RSM) involving central composite design (CCD) with full factorial experiments (23) was applied to elucidate the components that significantly affect co-production of endo-glucanase and xylanase. The optimum co-production conditions for endo-glucanase and xylanase were as follows: carboxymethyl cellulose (CMC) 20 g/L, yeast extract 15 g/L, and time 72 h. The maximum endo-glucanase and xylanase production obtained was 1.46 and 5.69 U/mL, respectively, while the minimum endo-glucanase and xylanase production obtained was 0.66 and 0.25 U/mL, respectively. This statistical model was efficient because only 20 experimental runs were necessary to assess the highest production conditions, and the model accuracy was very satisfactory as coefficient of determination (R2) was 0.95 and 0.89 for endo-glucanase and xylanase, respectively. Further, potential application of these enzymes for saccharification of lignocellulosic biomass (wheat bran, wheat straw, rice straw, and cotton stalk) was also investigated. The results revealed that the biomass was susceptible to enzymatic saccharification and the amount of reducing sugars (glucose and xylose) increased with increase in incubation time. In conclusion, Bacillus sonorensis BD92 reveals a promise as a source of potential endo-glucanase and xylanase producer that could be useful for degrading plant biomass into value-added products of economic importance using precise statistically optimized conditions.
- MeSH
- Bacillus růst a vývoj metabolismus MeSH
- biomasa * MeSH
- celulasa biosyntéza MeSH
- endo-1,4-beta-xylanasy biosyntéza MeSH
- fermentace MeSH
- hydrolýza MeSH
- průmyslová mikrobiologie metody MeSH
- rýže (rod) metabolismus MeSH
- sodná sůl karboxymethylcelulosy MeSH
- statistické modely MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- celulasa MeSH
- endo-1,4-beta-xylanasy MeSH
- sodná sůl karboxymethylcelulosy MeSH