Protein-protein interactions, controlling protein aggregation in the solution phase, are crucial for the formulation of protein therapeutics and the use of proteins in diagnostic applications. Additives in the solution phase are factors that may enhance the protein's conformational stability or induce crystallization. Protein-PEG interactions do not always stabilize the native protein structure. Structural information is needed to validate excipients for protein stabilization in the development of protein therapeutics or use proteins in diagnostic assays. The present study investigates the impact of polyethylene glycol (PEG) molecular weight and concentration on the spatial structure of human hemoglobin (Hb) at neutral pH. Small-angle X-ray scattering (SAXS) in combination with size-exclusion chromatography is employed to characterize the Hb structure in solution without and with the addition of PEG. Our results evidence that human hemoglobin maintains a tetrameric conformation at neutral pH. The dummy atom model, reconstructed from the SAXS data, aligns closely with the known crystallographic structure of methemoglobin (metHb) from the Protein Data Bank. We established that the addition of short-chain PEG600, at concentrations of up to 10% (w/v), acts as a stabilizer for hemoglobin, preserving its spatial structure without significant alterations. By contrast, 5% (w/v) PEG with higher molecular weights of 2000 and 4000 leads to a slight reduction in the maximum particle dimension (Dmax), while the radius of gyration (Rg) remains essentially unchanged. This implies a reduced hydration shell around the protein due to the dehydrating effect of longer PEG chains. At a concentration of 10% (w/v), PEG2000 interacts with Hb to form a complex that does not distort the protein's spatial configuration. The obtained results provide a deeper understanding of PEG's influence on the Hb structure in solution and broader knowledge regarding protein-PEG interactions.
- MeSH
- difrakce rentgenového záření * MeSH
- hemoglobiny * chemie MeSH
- koncentrace vodíkových iontů MeSH
- krystalizace * MeSH
- lidé MeSH
- maloúhlový rozptyl * MeSH
- molekulární modely MeSH
- molekulová hmotnost MeSH
- polyethylenglykoly * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hemoglobiny * MeSH
- polyethylenglykoly * MeSH
With the emergence of ultrafast X-ray sources, interest in following fast processes in small molecules and macromolecules has increased. Most of the current research into ultrafast structural dynamics of macromolecules uses X-ray free-electron lasers. In parallel, small-scale laboratory-based laser-driven ultrafast X-ray sources are emerging. Continuous development of these sources is underway, and as a result many exciting applications are being reported. However, because of their low flux, such sources are not commonly used to study the structural dynamics of macromolecules. This article examines the feasibility of time-resolved powder diffraction of macromolecular microcrystals using a laboratory-scale laser-driven ultrafast X-ray source.
- Klíčová slova
- macromolecular structure, time-resolved X-ray diffraction, ultrafast X-rays,
- Publikační typ
- časopisecké články MeSH
Plasmalogens (vinyl-ether phospholipids) are an emergent class of lipid drugs against various diseases involving neuro-inflammation, oxidative stress, mitochondrial dysfunction, and altered lipid metabolism. They can activate neurotrophic and neuroprotective signaling pathways but low bioavailabilities limit their efficiency in curing neurodegeneration. Here, liquid crystalline lipid nanoparticles (LNPs) are created for the protection and non-invasive intranasal delivery of purified scallop-derived plasmalogens. The in vivo results with a transgenic mouse Parkinson's disease (PD) model (characterized by motor impairments and α-synuclein deposition) demonstrate the crucial importance of LNP composition, which determines the self-assembled nanostructure type. Vesicle and hexosome nanostructures (characterized by small-angle X-ray scattering) display different efficacy of the nanomedicine-mediated recovery of motor function, lipid balance, and transcriptional regulation (e.g., reduced neuro-inflammation and PD pathogenic gene expression). Intranasal vesicular and hexosomal plasmalogen-based LNP treatment leads to improvement of the behavioral PD symptoms and downregulation of the Il6, Il33, and Tnfa genes. Moreover, RNA-sequencing and lipidomic analyses establish a dramatic effect of hexosomal nanomedicines on PD amelioration, lipid metabolism, and the type and number of responsive transcripts that may be implicated in neuroregeneration.
- Klíčová slova
- RNA‐seq, hexosomes, in vivo Parkinson's disease transgenic mouse model, liquid crystalline lipid nanoparticles, nanomedicine,
- MeSH
- aplikace intranazální * MeSH
- liposomy MeSH
- metabolismus lipidů účinky léků MeSH
- modely nemocí na zvířatech * MeSH
- myši transgenní MeSH
- myši MeSH
- nanočástice * chemie MeSH
- nanomedicína * metody MeSH
- Parkinsonova nemoc * metabolismus farmakoterapie MeSH
- plasmalogeny * chemie farmakologie MeSH
- regulace genové exprese účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Lipid Nanoparticles MeSH Prohlížeč
- liposomy MeSH
- plasmalogeny * MeSH
Nanomedicine for treating post-viral infectious disease syndrome is at an emerging stage. Despite promising results from preclinical studies on conventional antioxidants, their clinical translation as a therapy for treating post-COVID conditions remains challenging. The limitations are due to their low bioavailability, instability, limited transport to the target tissues, and short half-life, requiring frequent and high doses. Activating the immune system during coronavirus (SARS-CoV-2) infection can lead to increased production of reactive oxygen species (ROS), depleted antioxidant reserve, and finally, oxidative stress and neuroinflammation. To tackle this problem, we developed an antioxidant nanotherapy based on lipid (vesicular and cubosomal types) nanoparticles (LNPs) co-encapsulating ginkgolide B and quercetin. The antioxidant-loaded nanocarriers were prepared by a self-assembly method via hydration of a lyophilized mixed thin lipid film. We evaluated the LNPs in a new in vitro model for studying neuronal dysfunction caused by oxidative stress in coronavirus infection. We examined the key downstream signaling pathways that are triggered in response to potassium persulfate (KPS) causing oxidative stress-mediated neurotoxicity. Treatment of neuronally-derived cells (SH-SY5Y) with KPS (50 mM) for 30 min markedly increased mitochondrial dysfunction while depleting the levels of both glutathione peroxidase (GSH-Px) and tyrosine hydroxylase (TH). This led to the sequential activation of apoptotic and necrotic cell death processes, which corroborates with the crucial implication of the two proteins (GSH-Px and TH) in the long-COVID syndrome. Nanomedicine-mediated treatment with ginkgolide B-loaded cubosomes and vesicular LNPs showed minimal cytotoxicity and completely attenuated the KPS-induced cell death process, decreasing apoptosis from 32.6% (KPS) to 19.0% (MO-GB), 12.8% (MO-GB-Quer), 14.8% (DMPC-PEG-GB), and 23.6% (DMPC-PEG-GB-Quer) via free radical scavenging and replenished GSH-Px levels. These findings indicated that GB-LNPs-based nanomedicines may protect against KPS-induced apoptosis by regulating intracellular redox homeostasis.
- Klíčová slova
- ginkgolide B, glutathione peroxidase, long COVID syndrome, nanomedicine, oxidative stress, quercetin,
- MeSH
- antioxidancia * farmakologie MeSH
- COVID-19 metabolismus MeSH
- farmakoterapie COVID-19 * MeSH
- ginkgolidy * farmakologie MeSH
- glutathionperoxidasa * účinky léků metabolismus MeSH
- laktony farmakologie MeSH
- lidé MeSH
- nanočástice * MeSH
- nanomedicína * metody MeSH
- neurony účinky léků virologie MeSH
- oxidační stres * účinky léků MeSH
- postakutní syndrom COVID-19 * farmakoterapie metabolismus MeSH
- quercetin farmakologie MeSH
- reaktivní formy kyslíku metabolismus MeSH
- SARS-CoV-2 účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- ginkgolide B MeSH Prohlížeč
- ginkgolidy * MeSH
- glutathionperoxidasa * MeSH
- laktony MeSH
- quercetin MeSH
- reaktivní formy kyslíku MeSH
Cyclic-AMP-response element-binding protein (CREB) is a leucine zipper class transcription factor that is activated through phosphorylation. Ample CREB phosphorylation is required for neurotrophin expression, which is of key importance for preventing and regenerating neurological disorders, including the sequelae of long COVID syndrome. Here we created lipid-peptide nanoassemblies with different liquid crystalline structural organizations (cubosomes, hexosomes, and vesicles) as innovative nanomedicine delivery systems of bioactive PUFA-plasmalogens (vinyl ether phospholipids with polyunsaturated fatty acid chains) and a neurotrophic pituitary adenylate cyclase-activating polypeptide (PACAP). Considering that plasmalogen deficiency is a potentially causative factor for neurodegeneration, we examined the impact of nanoassemblies type and incubation time in an in vitro Parkinson's disease (PD) model as critical parameters for the induction of CREB phosphorylation. The determined kinetic changes in CREB, AKT, and ERK-protein phosphorylation reveal that non-lamellar PUFA-plasmalogen-loaded liquid crystalline lipid nanoparticles significantly prolong CREB activation in the neurodegeneration model, an effect unattainable with free drugs, and this effect can be further enhanced by the cell-penetrating peptide PACAP. Understanding the sustained CREB activation response to neurotrophic nanoassemblies might lead to more efficient use of nanomedicines in neuroregeneration.
- Publikační typ
- časopisecké články MeSH
Ionisable amino-lipid is a key component in lipid nanoparticles (LNPs), which plays a crucial role in the encapsulation of RNA molecules, allowing efficient cellular uptake and then releasing RNA from acidic endosomes. Herein, we present direct evidence for the remarkable structural transitions, with decreasing membrane curvature, including from inverse micellar, to inverse hexagonal, to two distinct inverse bicontinuous cubic, and finally to a lamellar phase for the two mainstream COVID-19 vaccine ionisable ALC-0315 and SM-102 lipids, occurring upon gradual acidification as encountered in endosomes. The millisecond kinetic growth of the inverse cubic and hexagonal structures and the evolution of the ordered structural formation upon ionisable lipid-RNA/DNA complexation are quantitatively revealed by in situ synchrotron radiation time-resolved small angle X-ray scattering coupled with rapid flow mixing. We found that the final self-assembled structural identity, and the formation kinetics, were controlled by the ionisable lipid molecular structure, acidic bulk environment, lipid compositions, and nucleic acid molecular structure/size. The implicated link between the inverse membrane curvature of LNP and LNP endosomal escape helps future optimisation of ionisable lipids and LNP engineering for RNA and gene delivery.
- Klíčová slova
- Ionisable Lipids, Kinetics, Lipid Nanoparticles, Nucleic Acids, Small-Angle Scattering,
- MeSH
- COVID-19 * prevence a kontrola MeSH
- koncentrace vodíkových iontů MeSH
- lidé MeSH
- lipidy chemie MeSH
- malá interferující RNA MeSH
- nanočástice * chemie MeSH
- nukleové kyseliny * chemie MeSH
- RNA MeSH
- vakcíny proti COVID-19 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lipidy MeSH
- malá interferující RNA MeSH
- nukleové kyseliny * MeSH
- RNA MeSH
- vakcíny proti COVID-19 MeSH
Nano-structured and functionalized materials for encapsulation, transport, targeting and controlled release of drugs are of high interest to overcome low bioavailability in oral administration. We develop lipid-based cubosomes, which are surface-functionalized with biocompatible chitosan-N-arginine and alginate, displaying internal liquid crystalline structures. Polyelectrolyte-shell (PS) cubosomes have pH-responsive characteristics profitable for oral delivery. The obtained PScubosomes can strongly interact with serum albumin, a protein which is released in the stomach under gastric cancer conditions. An effective thermodynamic PScubosome-protein interaction was characterized at pH 2.0 and 7.4 by isothermal titration calorimetry at 37 °C. A high increment of the albumin conformation transition temperature was evidenced by differential scanning calorimetry upon incubation with PScubosomes. The performed structural studies by synchrotron small-angle X-ray scattering (SAXS) revealed essential alterations in the internal liquid crystalline topology of the nanocarriers including an Im3m to Pn3m transition and a reduction of the cubic lattice parameters. The PScubosome nanoparticle interaction with serum albumin, leading to inner structural changes in a range of temperatures, promoted the release of water from the cubosomal nanochannels. Altogether, the results revealed effective interactions of the PScubosomes with albumin under simulated gastrointestinal pH conditions and suggested promising nanocarrier characteristics for triggered oral drug release.
- MeSH
- difrakce rentgenového záření MeSH
- gastrointestinální nádory * MeSH
- lidé MeSH
- maloúhlový rozptyl MeSH
- polyelektrolyty MeSH
- sérový albumin * MeSH
- uvolňování léčiv MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polyelektrolyty MeSH
- sérový albumin * MeSH
Time-resolved structural investigations of crystallization of water in lipid/protein/salt mesophases at cryogenic temperatures are significant for comprehension of ice nanocrystal nucleation kinetics in lipid membranous systems and can lead to a better understanding of how to experimentally retard the ice formation that obstructs the protein crystal structure determination. Here, we present a time-resolved synchrotron microfocus X-ray diffraction (TR-XRD) study based on ∼40,000 frames that revealed the dynamics of water-to-ice crystallization in a lipid/protein/salt mesophase subjected to cryostream cooling at 100 K. The monoolein/hemoglobin/salt/water system was chosen as a model composition related to protein-loaded lipid cubic phases (LCP) broadly used for the crystallization of proteins. Under confinement in the nanoscale geometry, metastable short-living cubic ice (Ic) rapidly crystallized well before the formation of hexagonal ice (Ih). The detected early nanocrystalline states of water-to-ice transformation in multicomponent systems are relevant to a broad spectrum of technologies and understanding of natural phenomena, including crystallization, physics of water nanoconfinement, and rational design of anti-freezing and cryopreservation systems.
- Klíčová slova
- Crystallization kinetics, Cubic ice, In situ microfocus beam X-ray diffraction, Lipid cubic phase, Monoolein/hemoglobin/water assembly, Nanoconfinement, Structural dynamics,
- MeSH
- krystalizace MeSH
- led * MeSH
- nízká teplota MeSH
- voda * chemie MeSH
- změna skupenství MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- led * MeSH
- voda * MeSH
Enabling challenging applications of nanomedicine and precision medicine in the treatment of neurodegenerative disorders requires deeper investigations of nanocarrier-mediated biomolecular delivery for neuronal targeting and recovery. The successful use of macromolecular biotherapeutics (recombinant growth factors, antibodies, enzymes, synthetic peptides, cell-penetrating peptide-drug conjugates, and RNAi sequences) in clinical developments for neuronal regeneration should benefit from the recent strategies for enhancement of their bioavailability. We highlight the advances in the development of nanoscale materials for drug delivery in neurodegenerative disorders. The emphasis is placed on nanoformulations for the delivery of brain-derived neurotrophic factor (BDNF) using different types of lipidic nanocarriers (liposomes, liquid crystalline or solid lipid nanoparticles) and polymer-based scaffolds, nanofibers and hydrogels. Self-assembled soft-matter nanoscale materials show favorable neuroprotective characteristics, safety, and efficacy profiles in drug delivery to the central and peripheral nervous systems. The advances summarized here indicate that neuroprotective biomolecule-loaded nanoparticles and injectable hydrogels can improve neuronal survival and reduce tissue injury. Certain recently reported neuronal dysfunctions in long-COVID-19 survivors represent early manifestations of neurodegenerative pathologies. Therefore, BDNF delivery systems may also help in prospective studies on recovery from long-term COVID-19 neurological complications and be considered as promising systems for personalized treatment of neuronal dysfunctions and prevention or retarding of neurodegenerative disorders.
We report a strategy for sustainable development of pH-responsive cubic liquid crystalline nanoparticles (cubosomes), in which the structure-defining lyotropic nonlamellar lipid and the eventually encapsulated guest molecules can be protected by pH-sensitive polyelectrolyte shells with mucoadhesive properties. Bulk non-lamellar phases as well as pH-responsive polyelectrolyte-modified nanocarriers were formed by spontaneous assembly of the nonlamellar lipid monoolein and two biopolymers tailored in nanocomplexes with pH-dependent net charge. The mesophase particles involved positively charged N-arginine-modified chitosan (CHarg) and negatively charged alginate (ALG) chains assembled at different biopolymer concentrations and charge ratios into a series of pH-responsive complexes. The roles of Pluronic F127 as a dispersing agent and a stabilizer of the nanoscale dispersions were examined. Synchrotron small-angle X-ray scattering (SAXS) investigations were performed at several N-arginine-modified chitosan/alginate ratios (CHarg/ALG with 10, 15 and 20 wt% ALG relative to CHarg) and varying pH values mimicking the pH conditions of the gastrointestinal route. The structural parameters characterizing the inner cubic liquid crystalline organizations of the nanocarriers were determined as well as the particle sizes and stability on storage. The surface charge variations, influencing the measured zeta-potentials, evidenced the inclusion of the CHarg/ALG biopolymer complexes into the lipid nanoassemblies. The polyelectrolyte shells rendered the hybrid cubosome nanocarriers pH-sensitive and influenced the swelling of their lipid-phase core as revealed by the acquired SAXS patterns. The pH-responsiveness and the mucoadhesive features of the cubosomal lipid/polyelectrolyte nanocomplexes may be of interest for in vivo drug delivery applications.
- Klíčová slova
- Cubic phase nanoparticles (cubosomes), Drug delivery systems for oral administration, Hybrid nonlamellar liquid crystalline nanostructures, N-arginine-modified chitosan, Self-assembled lipid/biopolymer complexes, Synchrotron small-angle X-ray scattering (SAXS),
- MeSH
- biopolymery MeSH
- difrakce rentgenového záření MeSH
- kapalné krystaly * MeSH
- koncentrace vodíkových iontů MeSH
- lipidy MeSH
- maloúhlový rozptyl MeSH
- synchrotrony * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biopolymery MeSH
- lipidy MeSH