Mountains have highly heterogeneous environments that generate ample opportunities for lineage differentiation through ecological adaptation, geographic isolation and secondary contact. The geographic and ecological isolation of the afroalpine vegetation fragments on the East African mountain tops makes them an excellent system to study speciation. The initial diversification within the afroalpine endemic genus Dendrosenecio was shown to occur via allopatric divergence among four isolated mountain groups, but the potential role of ecological speciation within these groups and the role of gene flow in speciation remained uncertain. Here we extend the sampling of Dendrosenecio and use phylogenomics to assess the importance of gene flow in the diversification of the genus. Then, population genomics, demographic modelling and habitat differentiation analyses are used to study ecological speciation in two sister species occurring on Mount Kenya. We found that two sympatric sister species on Mt Kenya occupy distinct microhabitats, and our analyses support that they originated in situ via ecological speciation with gene flow. In addition, we obtained signals of admixture history between mountain groups. Taken together, these results suggest that geographic isolation shaped main lineages, while ecologically mediated speciation occurred within a single mountain.
- Klíčová slova
- admixture, ddRADseq, demographic modelling, ecological speciation, geographic speciation, habitat differentiation, population genomics,
- Publikační typ
- časopisecké články MeSH
High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies.
- Klíčová slova
- Hyb-Seq, Illumina, NGS, anchored enrichment, bait, high throughput sequencing, molecular phylogenetics, probe,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH