BACKGROUND: Named entity recognition (NER) is a task of detecting named entities in documents and categorizing them to predefined classes, such as person, location, and organization. This paper focuses on tweets posted on Twitter. Since tweets are noisy, irregular, brief, and include acronyms and spelling errors, NER in those tweets is a challenging task. Many approaches have been proposed to deal with this problem in tweets written in English, Germany, Chinese, etc., but none for Vietnamese tweets. METHODS: We propose a method that normalizes a tweet before taking as an input of a learning model for NER in Vietnamese tweets. The normalization step detects spelling errors in a tweet and corrects them using an improved Dice's coefficient or n-grams. A Support Vector Machine learning algorithm is employed to learn a classifier using six different types of features. RESULTS AND CONCLUSION: We train our method on a training set consisting of more than 40,000 named entities and evaluate it on a testing set consisting of 3,186 named entities. The experimental results showed that our system achieves state-of-the-art performance with F1 score of 82.13%.
- Klíčová slova
- Named entity recognition, Spelling error detection and correction, Text normalization,
- Publikační typ
- časopisecké články MeSH
We propose an efficient method for compressing Vietnamese text using n-gram dictionaries. It has a significant compression ratio in comparison with those of state-of-the-art methods on the same dataset. Given a text, first, the proposed method splits it into n-grams and then encodes them based on n-gram dictionaries. In the encoding phase, we use a sliding window with a size that ranges from bigram to five grams to obtain the best encoding stream. Each n-gram is encoded by two to four bytes accordingly based on its corresponding n-gram dictionary. We collected 2.5 GB text corpus from some Vietnamese news agencies to build n-gram dictionaries from unigram to five grams and achieve dictionaries with a size of 12 GB in total. In order to evaluate our method, we collected a testing set of 10 different text files with different sizes. The experimental results indicate that our method achieves compression ratio around 90% and outperforms state-of-the-art methods.
- MeSH
- algoritmy * MeSH
- Asijci * MeSH
- komprese dat * MeSH
- lidé MeSH
- slovní zásoba * MeSH
- slovníky jako téma * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH