Women's most frequent type of cancer is breast cancer, second only to lung cancer. This paper summarizes changes in genomics and epigenetics and incremental biological activities. A tumour develops through a series of phases involving a separate abnormal gene. Even though many diseases cause DNA mutations, most treatments are designed to relieve symptoms rather than change the DNA. Clustering short palindromic repeats (CRISPR) or Cas9 is the primary approach for discovering and confirming tumorigenic genomic targets. A Kohonen neural network with an expression programming model was developed for gene selection. The main problem in genetic selection is reducing the number of features chosen while maintaining accuracy. This purpose is accomplished systematically. In the end, the approach method performed better than the existing quantum squirrel-inspired algorithm and the recurrent neural network oppositional call search algorithm for genetic selection. The KNNet-EPM model used an expression programming approach to identify gene biomarkers for breast cancer. This method was achieved with RAE of 42%, sensitivity of 93%, f1 score of 88%, accuracy of 98%, kappa score of 83%, specificity of 92% and MAE of 30%.
- Klíčová slova
- Gene profiling, KNNet-EPM, Neural network, RNN-OCSA, Tumor genesis,
- MeSH
- algoritmy MeSH
- karcinogeneze MeSH
- lidé MeSH
- nádory plic * MeSH
- nádory prsu * diagnóza genetika MeSH
- umělá inteligence MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
In recent times, the Internet of Medical Things (IoMT) is a new loomed technology, which has been deliberated as a promising technology designed for various and broadly connected networks. In an intelligent healthcare system, the framework of IoMT observes the health circumstances of the patients dynamically and responds to backings their needs, which helps detect the symptoms of critical rare body conditions based on the data collected. Metaheuristic algorithms have proven effective, robust, and efficient in deciphering real-world optimization, clustering, forecasting, classification, and other engineering problems. The emergence of extraordinary, very large-scale data being generated from various sources such as the web, sensors, and social media has led the world to the era of big data. Big data poses a new contest to metaheuristic algorithms. So, this research work presents the metaheuristic optimization algorithm for big data analysis in the IoMT using gravitational search optimization algorithm (GSOA) and reflective belief network with convolutional neural networks (DBN-CNNs). Here the data optimization has been carried out using GSOA for the collected input data. The input data were collected for the diabetes prediction with cardiac risk prediction based on the damage in blood vessels and cardiac nerves. Collected data have been classified to predict abnormal and normal diabetes range, and based on this range, the risk for a cardiac attack has been predicted using SVM. The performance analysis is made to reveal that GSOA-DBN_CNN performs well in predicting diseases. The simulation results illustrate that the GSOA-DBN_CNN model used for prediction improves accuracy, precision, recall, F1-score, and PSNR.
- MeSH
- algoritmy MeSH
- datové vědy * MeSH
- lidé MeSH
- neuronové sítě MeSH
- počítačová simulace MeSH
- sociální média * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH