The aim of the project was to determine any effect of hyperbaric air on Bacteroides fragilis strains cultivated under hyperbaric conditions. Previously, it was hypothesized that there was a correlation between the presence of Bacteroides bacteria in patients preferring a meaty diet and cancer of the small intestine, and particularly of the large intestine and rectum. With respect to the fact that Bacteroides fragilis (BAFR) group are important producers of endotoxins, measurement and statistical evaluation of endotoxin production by individual strains of isolated Bacteroides species were used to compare bacteria isolated from various clinical samples from patients with colon and rectum cancer in comparison with strains isolated from other non-cancer diagnoses. Endotoxin production was proven by quantitative detection using the limulus amebocyte lysate (LAL) test in EU/mL. Production of endotoxins in these bacteria cultured under hyperbaric air conditions was higher than those strains cultured under normobaric anaerobic conditions. But these differences in endotoxin production were not statistically significant (t test with log-transformed data, p value = 0.0910). Based on a two-tier t test for lognormal data, it is possible to cautiously conclude that a statistically significant difference was found between endotoxin production by Bacteroides fragilis strains isolated from non-carcinoma diagnoses (strains (1-6) and strains isolated from colorectal carcinoma diagnoses (strains 7-8; Wilcoxon non-parametric test p = 0.0132; t test = 0.1110; t test with log-transformed data, p value = 0.0294).
- MeSH
- Bacteroides fragilis chemie metabolismus MeSH
- endotoxiny metabolismus MeSH
- hyperbarická oxygenace MeSH
- kolorektální nádory mikrobiologie terapie MeSH
- kyslík * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- endotoxiny MeSH
- kyslík * MeSH
Clostridium difficile is the etiological agent of diarrhoea and colitis, especially in elderly patients. The incidence of these diseases has increased during the last 10 years. Emergence of so-called hypervirulent strains is considered as one of the main factors responsible for the more severe disease and changed profile of sensitivity to antimicrobial agents. The aim of this work was to determine the sensitivity profile of toxigenic strains of C. difficile in the Czech Republic in 2011-2012 to selected antibiotics. The antibiotics clindamycin, metronidazole, vancomycin and amoxicillin with clavulanic acid were used for this purpose. Isolates cultured on Brazier's C. difficile selective agar were analysed for the presence of toxin genes using Xpert detection system. Xpert analysis revealed that 33 strains carried the genes for toxins tcdB, cdt and tcdCΔ117, thus showing characteristics typical for the hypervirulent ribotype 027/PFGE type NAP1/REA type B1. The remaining 29 strains carried only the gene for toxin B (tcdB) and not cdt and tcdCΔ117. Our results indicate the higher susceptibility of C. difficile hypertoxigenic strains to three out of four tested antibiotics (except vancomycin) than it is for the other toxigenic strains. We found that only 10.34% of other toxigenic strains were resistant to clindamycin, and no resistance was found in all other cases. All the isolates were sensitive to amoxicillin/clavulanic acid in vitro. However, its use is not recommended for therapy of infections caused by C. difficile.
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence * MeSH
- bakteriální toxiny biosyntéza genetika MeSH
- Clostridioides difficile účinky léků genetika izolace a purifikace metabolismus MeSH
- infekce spojené se zdravotní péčí * MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- prohibitiny MeSH
- pseudomembranózní enterokolitida diagnóza mikrobiologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální toxiny MeSH
- PHB2 protein, human MeSH Prohlížeč
- prohibitiny MeSH