Aedes aegypti mosquitoes are the principal vectors of dengue and continue to pose a threat to human health, with ongoing urbanization, climate change and trade all impacting the distribution and abundance of this species. Hot periods are becoming increasingly common and their impacts on insect mortality have been well established, but they may have even greater impacts on insect fertility. In this study, we investigated the impacts of high temperatures on Ae. aegypti fertility both within and across generations. Mosquitoes developing under elevated temperatures exhibited higher critical thermal maxima (CTmax), reflecting developmental acclimation, but their fertility declined with increasing developmental temperature. In females, elevated developmental temperatures decreased fecundity while in males it tended to decrease the proportion of eggs that hatched and the proportion of individuals producing viable offspring. Rearing both sexes at 35°C increased fecundity in the subsequent generation but effects of elevated temperatures persisted across gonotrophic cycles within the same generation. Moreover, exposure of adults to 35°C further decreased fertility beyond the effects of developmental temperature alone. These findings highlight sub-lethal impacts of elevated temperatures on Ae. aegypti fertility and plastic responses to thermal stress within and across generations. This has significant implications for predicting the distribution and abundance of mosquito populations thriving in increasingly warmer environments.
- Klíčová slova
- Acclimation, Fecundity, Heat stress, Mosquito, Thermal limit,
- MeSH
- Aedes * růst a vývoj fyziologie MeSH
- fertilita * MeSH
- klimatické změny MeSH
- teplota MeSH
- vysoká teplota MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tularemia is a zoonosis caused by Francisella tularensis, a gram-negative aerobic bacterium belonging to the class of Gammaproteobacteria and the family Francisellaceae. Despite its undeniable importance for human health, there is little data on the current distribution of F. tularensis in various hematophagous arthropods. The aim of this study was to perform a mass molecular screening of different possible hematophagous vectors: ticks (4348 ticks of the species Ixodes ricinus, Dermacentor reticulatus, and Haemaphysalis concinna), mosquitoes (4100 specimens of Aedes vexans), and blackflies (6900 specimens of the Simulium spp.) for the presence of F. tularensis in the Břeclav district in 2022. Only two specimens were positive for the specific DNA of Francisella tularensis subsp. holarctica. Both samples originated from D. reticulatus, one collected from infested roe deer and the other included in a pooled sample (n = 10). Both positive samples were sequenced, and the presence of F. tularensis subsp. holarctica was confirmed. In addition, the absence of F. tularensis in mosquitoes and black flies was documented.
- Klíčová slova
- Aedes vexans, Dermacentor reticulatus, Francisella, Haemaphysalis concinna, Ixodes ricinus, Simulium spp., tularemia, zoonosis,
- MeSH
- Aedes mikrobiologie MeSH
- členovci - vektory mikrobiologie MeSH
- Culicidae mikrobiologie MeSH
- Francisella tularensis * izolace a purifikace MeSH
- lidé MeSH
- Simuliidae mikrobiologie MeSH
- tularemie přenos epidemiologie MeSH
- vysoká zvěř parazitologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Mosquitoes are important vectors of disease pathogens and multiple species are undergoing geographical shifts due to global changes. As such, there is a growing need for accurate distribution predictions. Ecological niche modelling (ENM) is an effective tool to assess mosquito distribution patterns and link these to underlying environmental preferences. Typically, macroclimatic variables are used as primary predictors of mosquito distributions. However, they likely undervalue local conditions and intraspecific variation in environmental preferences. This is problematic, as mosquito control takes place at the local scale. Utilising high-resolution (10 × 10 m) Maxent ENMs on the island of Bonaire as model system, we explore the influence of local environmental variables on mosquito distributions. Our results show a distinct set of environmental variables shape distribution patterns across ecologically-distinct species, with urban variables strongly associated with introduced species like Aedes aegypti and Culex quinquefasciatus, while native species show habitat preferences for either mangroves, forests, or ephemeral water habitats. These findings underscore the importance of distinct local environmental factors in shaping distributions of different mosquitoes, even on a small island. As such, these findings warrant further studies aimed at predicting high-resolution mosquito distributions, opening avenues for preventative management of vector-borne disease risks amidst ongoing global change and ecosystem degradation.
- MeSH
- Aedes fyziologie MeSH
- Culex fyziologie MeSH
- Culicidae * fyziologie MeSH
- ekosystém * MeSH
- komáří přenašeči * fyziologie MeSH
- rozšíření zvířat MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The corpora allata-corpora cardiaca (CA-CC) is an endocrine gland complex that regulates mosquito development and reproduction through the synthesis of juvenile hormone (JH). Epoxidase (Epox) is a key enzyme in the production of JH. We recently utilized CRISPR/Cas9 to establish an epoxidase-deficient (epox-/-) Aedes aegypti line. The CA from epox-/- mutants do not synthesize epoxidated JH III but methyl farneosate (MF), a weak agonist of the JH receptor, and therefore have reduced JH signalling. Illumina sequencing was used to examine the differences in gene expression between the CA-CC from wild type (WT) and epox-/- adult female mosquitoes. From 18,034 identified genes, 317 were significantly differentially expressed. These genes are involved in many biological processes, including the regulation of cell proliferation and apoptosis, energy metabolism, and nutritional uptake. In addition, the same CA-CC samples were also used to examine the microRNA (miRNA) profiles of epox-/- and WT mosquitoes. A total of 197 miRNAs were detected, 24 of which were differentially regulated in epox-/- mutants. miRNA binding sites for these particular miRNAs were identified using an in silico approach; they target a total of 101 differentially expressed genes. Our results suggest that a lack of epoxidase, besides affecting JH synthesis, results in the diminishing of JH signalling that have significant effects on Ae. aegypti CA-CC transcriptome profiles, as well as its miRNA repertoire.
- Klíčová slova
- Aedes aegypti, Corpora allata, Epoxidase, Juvenile hormone, Mosquito, RNA-Seq, Transcriptome, microRNA,
- MeSH
- Aedes * genetika metabolismus MeSH
- corpora allata metabolismus MeSH
- exprese genu MeSH
- juvenilní hormony metabolismus MeSH
- mikro RNA * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- juvenilní hormony MeSH
- mikro RNA * MeSH
Body mass underpins many ecological processes at the level of individuals, populations, and communities. Often estimated in arthropods from linear morphological traits such as body length or head width, these relationships can vary even between closely related taxa. Length-mass relationships of mosquito (Diptera: Culicidae) larvae are poorly known despite the importance of this family to disease and aquatic ecology. To fill this gap, we measured ontogenetic changes in linear traits (body length, head width, and thorax width) and dry and wet masses and estimated length- and width-mass relationships in larvae of 3 culicid species inhabiting different niches: the tropical Aedes albopictus (Skuse, 1894), the temperate Culex pipiens (Linnaeus, 1758), and the snowmelt Ochlerotatus punctor (Kirby, 1837). We compared our results with published length-mass allometries of other aquatic dipteran larvae. We showed that thorax width and body length, but not head width, reliably predicted body mass for our 3 species. The length-mass allometry slopes in aquatic dipterans varied considerably between and within families but were independent of phylogeny, specimen handling, preservation techniques, and data fitting methods. Slope estimates became less precise with decreasing sample size and size range. To obtain reliable estimates of the allometric slopes, we have thus recommended using data on all larval stages for intraspecific allometries and a wide range of species for interspecific allometries. We also cautioned against the indiscriminate use of length-mass allometries obtained for other taxa or collected at lower taxonomic resolutions, e.g., when using length-mass relationships to estimate biomass production at a given site.
Juvenile hormone (JH) controls the development and reproduction of insects. Therefore, a tight regulation of the expression of JH biosynthetic enzymes is critical. microRNAs (miRNAs) play significant roles in the post-transcriptional regulation of gene expression by interacting with complementary sequences in target genes. Previously, we reported that several miRNAs were differentially expressed during three developmental stages of Aedes aegypti mosquitoes with different JH levels (no JH, high JH, and low JH). One of these miRNAs was aae-miR-34-5p. In this study, we identified the presence of potential target sequences of aae-miR-34-5p in the transcripts of some genes encoding JH biosynthetic enzymes. We analysed the developmental expression patterns of aae-miR-34-5p and the predicted target genes involved in JH biogenesis. Increases in miRNA abundance were followed, with a delay, by decreases in transcript levels of target genes. Application of an inhibitor and a mimic of aae-miR-34-5p led respectively to increased and decreased levels of thiolase transcripts, which is one of the early genes of JH biosynthesis. Female adult mosquitoes injected with an aae-miR-34-5p inhibitor exhibited significantly increased transcript levels of three genes encoding JH biosynthetic enzymes, acetoacetyl-CoA thiolase (thiolase), farnesyl diphosphate phosphatase, and farnesal dehydrogenase. Overall, our results suggest a potential role of miRNAs in JH production by directly targeting genes involved in its biosynthesis.
- MeSH
- Aedes * MeSH
- juvenilní hormony metabolismus MeSH
- mikro RNA * genetika metabolismus MeSH
- regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- juvenilní hormony MeSH
- mikro RNA * MeSH
Ťahyňa virus (TAHV) is an orthobunyavirus and was the first arbovirus isolated from mosquitoes in Europe and is associated with floodplain areas as a characteristic biotope, hares as reservoir hosts and the mammal-feeding mosquitoes Aedes vexans as the main vector. The disease caused by TAHV ("Valtice fever") was detected in people with acute flu-like illness in the 1960s, and later the medical significance of TAHV became the subject of many studies. Although TAHV infections are widespread, the prevalence and number of actual cases, clinical manifestations in humans and animals and the ecology of transmission by mosquitoes and their vertebrate hosts are rarely reported. Despite its association with meningitis in humans, TAHV is a neglected human pathogen with unknown public health importance in Central Europe, and a potential emerging disease threat elsewhere in Europe due to extreme summer flooding events.
- Klíčová slova
- Aedes, Europe, Valtice fever, arboviruses, mosquito, vectors,
- MeSH
- Aedes * MeSH
- arboviry * MeSH
- komáří přenašeči MeSH
- lidé MeSH
- savci MeSH
- viry kalifornské encefalitidy * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
Aedes koreicus is an invasive mosquito species originating from East Asia. It has recently been introduced into several countries in Southern, Central and Eastern Europe as well as Central Asia in many of which it has successfully established populations. The biology and ecological requirements of the species are largely unknown, but it is considered as a potential vector of pathogens that requires careful monitoring. We report here the first detection of Ae. koreicus in the Czech Republic, based on a citizen report.
- Klíčová slova
- Aedes koreicus, Central Europe, Invasive species, Mosquito vector, Surveillance,
- MeSH
- Aedes * MeSH
- Culicidae * MeSH
- komáří přenašeči MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- východní Evropa MeSH
Juvenile hormone (JH) is synthesized by the corpora allata (CA) and controls development and reproduction in insects. Therefore, achieving tissue-specific expression of transgenes in the CA would be beneficial for mosquito research and control. Different CA promoters have been used to drive transgene expression in Drosophila, but mosquito CA-specific promoters have not been identified. Using the CRISPR/Cas9 system, we integrated transgenes encoding the reporter green fluorescent protein (GFP) close to the transcription start site of juvenile hormone acid methyl transferase (JHAMT), a locus encoding a JH biosynthetic enzyme, specifically and highly expressed in the CA of Aedes aegypti mosquitoes. Transgenic individuals showed specific GFP expression in the CA but failed to reproduce the full pattern of jhamt spatiotemporal expression. In addition, we created GeneSwitch driver and responder mosquito lines expressing an inducible fluorescent marker, enabling the temporal regulation of the transgene via the presence or absence of an inducer drug. The use of the GeneSwitch system has not previously been reported in mosquitoes and provides a new inducible binary system that can control transgene expression in Aedes aegypti.
- MeSH
- Aedes * genetika MeSH
- corpora allata * MeSH
- Drosophila MeSH
- exprese genu MeSH
- geneticky modifikovaná zvířata MeSH
- juvenilní hormony MeSH
- zelené fluorescenční proteiny genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- juvenilní hormony MeSH
- zelené fluorescenční proteiny MeSH
BACKGROUND: Aedes japonicus is a mosquito species native to North-East Asia that was first found established outside its original geographic distribution range in 1998 and has since spread massively through North America and Europe. In the Czech Republic, the species was not reported before 2021. METHODS: Aedes invasive mosquitoes (AIM) are routinely surveyed in the Czech Republic by ovitrapping at potential entry ports. This surveillance is supported by appeals to the population to report uncommon mosquitoes. The submission of an Ae. japonicus specimen by a citizen in 2021 was followed by local search for aquatic mosquito stages in the submitter's garden and short-term adult monitoring with encephalitis virus surveillance (EVS) traps in its surroundings. Collected Ae. japonicus specimens were subjected to nad4 haplotype and microsatellite analyses. RESULTS: Aedes japonicus was detected for the first time in the Czech Republic in 2021. Aquatic stages and adults were collected in Prachatice, close to the Czech-German border, and eggs in Mikulov, on the Czech-Austrian border. Morphological identification was confirmed by molecular taxonomy. Genetic analysis of specimens and comparison of genetic data with those of other European populations, particularly from Germany, showed the Prachatice specimens to be most closely related to a German population. The Mikulov specimens were more distantly related to those, with no close relatives identifiable. CONCLUSIONS: Aedes japonicus is already widely distributed in Germany and Austria, two countries neighbouring the Czech Republic, and continues to spread rapidly in Central Europe. It must therefore be assumed that the species is already present at more than the two described localities in the Czech Republic and will further spread in this country. These findings highlight the need for more comprehensive AIM surveillance in the Czech Republic.
- Klíčová slova
- Aedes japonicus, Central Europe, Introduction, Invasive species, Surveillance, Vector,
- MeSH
- Aedes * genetika MeSH
- haplotypy MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Německo MeSH