Due to translocation heterozygosity for all chromosomes in the cell complement, the oyster plant (Tradescantia spathacea) forms a complete meiotic ring. It also shows Rabl-arrangement at interphase, featured by polar centromere clustering. We demonstrate that the pericentromeric regions of the oyster plant are homogenized in concert by three subtelomeric sequences: 45S rDNA, (TTTAGGG)n motif, and TSrepI repeat. The Rabl-based clustering of pericentromeric regions may have been an excellent device to combine the subtelomere-pericentromere sequence migration (via inversions) with the pericentromere-pericentromere DNA movement (via whole arm translocations) that altogether led to the concerted homogenization of all the pericentromeric domains by the subtelomeric sequences. We also show that the repetitive sequence landscape of interstitial chromosome regions contains many loci consisting of Arabidopsis-type telomeric sequence or of TSrepI repeat, and it is extensively heterozygous. However, the sequence arrangement on some chromosomal arms suggest segmental inversions that are fully or partially homozygous, a fact that could be explained if the inversions started to create linkages already in a bivalent-forming ancestor. Remarkably, the subterminal TSrepI loci reside exclusively on the longer arms that could be due to sharing sequences between similarly-sized chromosomal arms in the interphase nucleus. Altogether, our study spotlights the supergene system of the oyster plant as an excellent model to link complex chromosome rearrangements, evolution of repetitive sequences, and nuclear architecture.
- Klíčová slova
- Inversions, Permanent translocation heterozygosity, Rabl configuration, Repetitive DNA, Tradescantia spathacea, Translocations,
- MeSH
- heterochromatin MeSH
- hybridizace in situ fluorescenční MeSH
- Ostreidae * genetika MeSH
- repetitivní sekvence nukleových kyselin MeSH
- ribozomální DNA genetika MeSH
- Tradescantia * genetika MeSH
- translokace genetická MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin MeSH
- ribozomální DNA MeSH
Cadmium (Cd) accumulation, antioxidant activity (AOA), chlorophyll fluorescence (F) and organic acid distribution in Chlorophytum comosum and Callisia fragrans plants exposed to artificially added Cd (40, 160 and 320 mg kg-1) were examined in pot experiment. At the highest Cd concentration, C. comosum accumulated in roots and the aboveground parts up to 1331 and 1054 mg Cd kg-1 DW, and C. fragrans up to 1427 and 1263 mg Cd kg-1 DW, respectively, which are quite near at the level of hyperaccumulator. Cd accumulation in both plant species increased significantly with the increment of soil Cd dosage, and the distribution was roots > shoots > stolons. Values of BC showed rising trend indicating an accumulation potential of both species. The root AOA was positively correlated to Cd addition, especially in C. comosum. Higher values of free SA were found in roots with a significant enhancement at concentrations of 40 and 160 mg kg-1 Cd. It was observed that citric acid significantly reacted in both species, while fumaric acid only in C. comosum in response to Cd which may contribute to Cd chelation. Our data indicate that both species are suitable for phytoextraction of Cd from contaminated soils which increases their value as ornamentals.
- Klíčová slova
- Antioxidant capacity, Cadmium, Callisia fragrans, Chlorophytum comosum, Hyperaccumulator, Organic acids,
- MeSH
- Asparagaceae metabolismus MeSH
- biodegradace MeSH
- Commelinaceae metabolismus MeSH
- kadmium metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- látky znečišťující půdu metabolismus MeSH
- výhonky rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kadmium MeSH
- látky znečišťující půdu MeSH