The increasing spread of Acne vulgaris makes antibacterial agents increasingly important, especially for patients, who cannot use systemic antibacterial therapeutics. Recently, polymeric nano- and submicron-fibers with have attracted increasing interest in cosmetic and dermatological applications. Combined with the Vapor Phase Infiltration (VPI) process, the fibers serve as containers for the growth of metal oxides for a later use. We address the use of antibacterial agents by developing active antibacterial polymer-inorganic composites without any ZnO nanoparticles on the surface that are loose and would potentially detach. We fabricate poly(vinyl alcohol) fibers by centrifugal spinning and then infiltrate them with ZnO by applying 1 to 128 VPI cycles in the fluidized bed Atomic Layer Deposition reactor. The fibers´ morphology and structure is investigated by Scanning and Transmission Electron Microscopies and X-ray diffractometry. The presence of Zn and its uniform distribution on the surface is confirmed by scanning TEM Energy Dispersive X-ray spectroscopy. The prepared materials are subsequently tested for their antibacterial activity against Cutibacterium acnes and Staphylococcus epidermidis, main acne-causing bacteria. The results of antibacterial activity show that PVA fibers infiltrated with ZnO nanocrystals by >32 VPI cycles effectively inhibit growth of the acne-causing bacteria. Moreover, the homogeneous distribution of ZnO nanocrystals infiltrated within the fibers ensures the immediate release of Zn2+ while preserving the fibrous structure, in contrast to fibers with nanoparticles prepared directly from the spinning solution. Therefore, the study suggests that the PVA fibers infiltrated with ZnO exhibit promising potential as a material for anti-acne face masks.
- Klíčová slova
- Acne vulgaris, Antibacterial activity, Centrifugal spinning, Nanocrystals, Vapor phase infiltration, ZnO,
- MeSH
- acne vulgaris * farmakoterapie mikrobiologie MeSH
- antibakteriální látky * aplikace a dávkování chemie farmakologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- nanočástice chemie MeSH
- oxid zinečnatý * chemie aplikace a dávkování MeSH
- polyvinylalkohol * chemie aplikace a dávkování MeSH
- Propionibacteriaceae účinky léků MeSH
- Propionibacterium acnes účinky léků MeSH
- Staphylococcus epidermidis účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- oxid zinečnatý * MeSH
- polyvinylalkohol * MeSH
Antibiotic resistance is one of the biggest threats to global health. Fungal endophytes are important sources of active natural products with antimicrobial potential. The purpose of this study was to characterize the endophytes coexisting with Helichrysum oocephalum, evaluate their antimicrobial activities, and annotate the endophytes metabolites. Six fungal species, including Fusarium avenaceum and Fusarium tricinctum, were identified. Endophytes were cultured, and their metabolites were extracted. The antimicrobial effects of the extracts were tested against Staphylococcus aureus, Bacillus cereus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. In addition, anti-biofilm effects of the extracts were examined against P. aeruginosa and S. epidermidis. The metabolites in the most active extract were annotated on the basis of the LC-ESI-QToF-MS/MS data. In anti-biofilm studies, F. avenaceum extract was effective in destroying and inhibiting the biofilm formation of S. epidermidis. LC-MS analysis showed that most of the identified compounds in the active extracts were enniatins (cyclic hexadepsipeptides). However, apicidin derivatives were also annotated. Our results revealed that these endophytes, especially Fusarium species, have antimicrobial activity against S. aureus, B. cereus, and C. albicans and anti-biofilm activity against S. epidermidis. According to the literature, the observed antimicrobial activity can be attributed to the enniatins. However, further phytochemical and pharmacological studies are necessary in this regard.
- Klíčová slova
- Fusarium, LC–MS, antimicrobial, anti‐biofilm, endophyte, enniatin,
- MeSH
- antibakteriální látky * farmakologie izolace a purifikace chemie MeSH
- antifungální látky * farmakologie izolace a purifikace chemie MeSH
- antiinfekční látky * farmakologie izolace a purifikace chemie MeSH
- Bacillus cereus účinky léků MeSH
- biofilmy účinky léků MeSH
- Candida albicans účinky léků MeSH
- endofyty * chemie metabolismus izolace a purifikace MeSH
- Escherichia coli účinky léků MeSH
- Fusarium * chemie metabolismus MeSH
- mikrobiální testy citlivosti MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- Staphylococcus aureus účinky léků MeSH
- Staphylococcus epidermidis účinky léků MeSH
- tandemová hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- antifungální látky * MeSH
- antiinfekční látky * MeSH
BACKGROUND: Antimicrobial lock therapy is recommended for preventing and treating catheter-related bloodstream infections, but different solutions have uncertain efficacy. METHODS: Two locks, 1.35% taurolidine and 4% ethylenediaminetetraacetic acid (EDTA), were tested on Staphylococcus epidermidis, Staphylococcus aureus, methicillin-resistant S. aureus, Pseudomonas aeruginosa, multidrug-resistant P. aeruginosa, vancomycin-resistant Enterococcus faecium, Klebsiella oxytoca (carbapenemase producing), K. pneumoniae (extended-spectrum β-lactamase producing), Candida albicans, and Candida glabrata. Broviac catheter segments were incubated with these organisms and then exposed to various lock solutions. Colony-forming units (CFUs) were counted after 2, 4, and 24 h of incubation. RESULTS: Taurolidine showed a significant decrease in CFUs after 2 h in S. aureus, S. epidermidis, methicillin-resistant S. aureus, vancomycin-resistant E. faecium, P. aeruginosa (both sensitive and multidrug-resistant strains), K. oxytoca, C. albicans, and C. glabrata. After 4 h, significant reductions were noted in S. aureus, S. epidermidis, methicillin-resistant S. aureus, P. aeruginosa, multidrug-resistant P. aeruginosa, K. pneumoniae, K. oxytoca, and C. albicans. Taurolidine was also effective after 24 h, especially against methicillin-resistant S. aureus and multidrug-resistant P. aeruginosa. Four percent EDTA acid showed a significant reduction in CFUs after 2 h in S. aureus, vancomycin-resistant E. faecium, P. aeruginosa, K. oxytoca, C. albicans, and C. glabrata. After 4 h, reductions occurred in P. aeruginosa, multidrug-resistant P. aeruginosa, K. oxytoca, and C. albicans and after 24 h in methicillin-resistant S. aureus, P. aeruginosa, and K. oxytoca. CONCLUSION: Taurolidine is more effective than 4% EDTA acid in eradicating Gram-positive and Gram-negative microorganisms and fungi.
- Klíčová slova
- antimicrobial lock, catheter‐related blood stream infection, ethylenediaminetetraacetic acid, home parenteral nutrition, taurolidine, venous catheter,
- MeSH
- antiinfekční látky * farmakologie MeSH
- Candida albicans účinky léků MeSH
- EDTA * farmakologie MeSH
- katétrové infekce * prevence a kontrola mikrobiologie MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- počet mikrobiálních kolonií MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- Staphylococcus aureus účinky léků MeSH
- Staphylococcus epidermidis účinky léků MeSH
- taurin * analogy a deriváty farmakologie MeSH
- thiadiaziny * farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- antiinfekční látky * MeSH
- EDTA * MeSH
- taurin * MeSH
- taurolidine MeSH Prohlížeč
- thiadiaziny * MeSH
Biomaterial-associated infections pose severe challenges in modern medicine. Previously, we reported that polyanionic DNA surface coatings repel bacterial adhesion and support osteoblast-like cell attachment in monoculture experiments, candidate for orthopaedic implant coatings. However, monocultures lack the influence of bacteria or bacterial toxins on osteoblast-like cell adhesion to biomaterial surfaces. In this study, co-culture of staphylococcus (S. epidermidis and S. aureus) and SaOS-2 osteosarcoma cells was studied on chitosan-DNA polyelectrolyte multilayer coated glass based on the concept of `the race for the surface`. Staphylococcus was first deposited onto the surface in a microfluidic chamber to mimic peri-operative contamination, and subsequently, SaOS-2 cells were seeded. Both staphylococcus and SaOS-2 cells were cultured together on the surfaces for 24 h under flow. The presence of S. epidermidis decreased SaOS-2 cell number on all surfaces after 24 h. However, the cells that adhered spread equally well in the presence of low virulent S. epidermidis. However, highly virulent S. aureus induced cell death of all adherent SaOS-2 cells on chitosan-DNA multilayer coated glass, a worse outcome than on uncoated glass. The outcome of our co-culture study highlights the limitations of monoculture models. It demonstrates the need for in vitro co-culture assays to meaningfully bridge the gap in lab testing of biomaterials and their clinical evaluations where bacterial infection can occur. The relative failure of cell-adhesive and bacteria-repelling DNA coatings in co-cultures also suggests the need to incorporate bactericidal in addition to non-adhesive functions to protect competitive cell spreading over a long period.
- Klíčová slova
- Biofilms, Biomaterial-associated infections, Co-culture, Coatings, DNA polyelectrolyte, Flow, Multilayer, Osteoblasts, Pathogens, Race for the surface, Staphylococcus,
- MeSH
- bakteriální adheze účinky léků MeSH
- biokompatibilní potahované materiály chemie farmakologie MeSH
- buněčná adheze účinky léků MeSH
- chitosan chemie farmakologie MeSH
- DNA * chemie MeSH
- kokultivační techniky MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- osteoblasty * účinky léků cytologie MeSH
- polyelektrolyty chemie farmakologie MeSH
- povrchové vlastnosti * MeSH
- Staphylococcus aureus * účinky léků MeSH
- Staphylococcus epidermidis * účinky léků fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní potahované materiály MeSH
- chitosan MeSH
- DNA * MeSH
- polyelektrolyty MeSH
Biodegradable films derived from polysaccharides are increasingly considered eco-friendly alternatives to synthetic packaging in the food industry. The study's purpose was to improve the antimicrobial properties of biopolymer-based films made from starch, chitosan, alginate, and their blends (starch/chitosan and starch/alginate) and to evaluate the effects of modifiers, i.e., plant extracts, plasticizers, cross-linking agents, and nanofillers. Films were prepared via the Solution Casting Method and modified with various plasticizers, calcium chloride, oxidized sucrose, and nanofiber cellulose (NC). Chestnut, nettle, grape, and graviola extracts were tested for antimicrobial activity against Staphylococcus epidermidis, Escherichia coli, and Candida albicans. The film's mechanical and hydrophilic properties were studied as well. The chestnut extract showed the strongest antimicrobial properties, leading to its incorporation in all the films. The chitosan films displayed better antibacterial activity against Gram-positive than Gram-negative bacteria but were ineffective against C. albicans. NC significantly improved the mechanical and antimicrobial properties of the chitosan films. The alginate films, modified with various plasticizers cross-linked with calcium chloride, demonstrated the highest antimicrobial efficacy against E. coli. The starch films, cross-linked with oxidized sucrose, exhibited slightly lower antimicrobial resistance due to a more compact structure. Films such as ALG6 and ALG5, including plasticizers EPGOS and PGOS, respectively, indicated optimal hydrophilicity and mechanical properties and achieved the best antimicrobial performance against all the investigated microorganisms. All these findings highlight the potential of these biodegradable films for food packaging, offering enhanced antimicrobial activity that prolongs shelf life and reduces spoilage, making them promising candidates for sustainable food preservation.
- Klíčová slova
- antimicrobial, biofilms, environmentally friendly, food packaging,
- MeSH
- algináty chemie MeSH
- antiinfekční látky * farmakologie chemie MeSH
- biopolymery chemie farmakologie MeSH
- Candida albicans * účinky léků MeSH
- chitosan * chemie farmakologie MeSH
- Escherichia coli účinky léků růst a vývoj MeSH
- mikrobiální testy citlivosti MeSH
- obaly potravin * metody MeSH
- rostlinné extrakty chemie farmakologie MeSH
- škrob * chemie MeSH
- Staphylococcus epidermidis účinky léků MeSH
- změkčovadla chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- algináty MeSH
- antiinfekční látky * MeSH
- biopolymery MeSH
- chitosan * MeSH
- rostlinné extrakty MeSH
- škrob * MeSH
- změkčovadla MeSH
Although metabolomics data acquisition and analysis technologies have become increasingly sophisticated over the past 5-10 years, deciphering a metabolite's function from a description of its structure and its abundance in a given experimental setting is still a major scientific and intellectual challenge. To point out ways to address this "data to knowledge" challenge, we developed a functional metabolomics strategy that combines state-of-the-art data analysis tools and applied it to a human scalp metabolomics data set: skin swabs from healthy volunteers with normal or oily scalp (Sebumeter score 60-120, n = 33; Sebumeter score > 120, n = 41) were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), yielding four metabolomics data sets for reversed phase chromatography (C18) or hydrophilic interaction chromatography (HILIC) separation in electrospray ionization (ESI) + or - ionization mode. Following our data analysis strategy, we were able to obtain increasingly comprehensive structural and functional annotations, by applying the Global Natural Product Social Networking (M. Wang, J. J. Carver, V. V. Phelan, L. M. Sanchez, et al., Nat Biotechnol 34:828-837, 2016, https://doi.org/10.1038/nbt.3597), SIRIUS (K. Dührkop, M. Fleischauer, M. Ludwig, A. A. Aksenov, et al., Nat Methods 16:299-302, 2019, https://doi.org/10.1038/s41592-019-0344-8), and MicrobeMASST (S. ZuffaS, R. Schmid, A. Bauermeister, P. W, P. Gomes, et al., bioRxiv:rs.3.rs-3189768, 2023, https://doi.org/10.21203/rs.3.rs-3189768/v1) tools. We finally combined the metabolomics data with a corresponding metagenomic sequencing data set using MMvec (J. T. Morton, A. A. Aksenov, L. F. Nothias, J. R. Foulds, et. al., Nat Methods 16:1306-1314, 2019, https://doi.org/10.1038/s41592-019-0616-3), gaining insights into the metabolic niche of one of the most prominent microbes on the human skin, Staphylococcus epidermidis.IMPORTANCESystems biology research on host-associated microbiota focuses on two fundamental questions: which microbes are present and how do they interact with each other, their host, and the broader host environment? Metagenomics provides us with a direct answer to the first part of the question: it unveils the microbial inhabitants, e.g., on our skin, and can provide insight into their functional potential. Yet, it falls short in revealing their active role. Metabolomics shows us the chemical composition of the environment in which microbes thrive and the transformation products they produce. In particular, untargeted metabolomics has the potential to observe a diverse set of metabolites and is thus an ideal complement to metagenomics. However, this potential often remains underexplored due to the low annotation rates in MS-based metabolomics and the necessity for multiple experimental chromatographic and mass spectrometric conditions. Beyond detection, prospecting metabolites' functional role in the host/microbiome metabolome requires identifying the biological processes and entities involved in their production and biotransformations. In the present study of the human scalp, we developed a strategy to achieve comprehensive structural and functional annotation of the metabolites in the human scalp environment, thus diving one step deeper into the interpretation of "omics" data. Leveraging a collection of openly accessible software tools and integrating microbiome data as a source of functional metabolite annotations, we finally identified the specific metabolic niche of Staphylococcus epidermidis, one of the key players of the human skin microbiome.
- Klíčová slova
- metabolite annotation, metabolomics, multi-omics integration, scalp, skin microbiome,
- MeSH
- chromatografie kapalinová MeSH
- lidé MeSH
- metabolomika metody MeSH
- skalp * MeSH
- Staphylococcus epidermidis * MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This study evaluated the effect of low-molecular weight chitosan on Staphylococcus epidermidis, a common colonizer of joint implants and other prosthetic devices. We have also attempted to elucidate its mechanism of action. Chitosan was found to be effective against both the planktonic and biofilm cells (MIC80 35-40 mg/L; MBIC80 40-150 mg/L), in contrast to the antibiotics erythromycin and tetracycline with no antibiofilm activity (MBIC80 not found). In combination, chitosan had an additive effect with antibiotics on suspension growth of S. epidermidis (FICi 0.7-1.0), and the combinatory action caused a complete inhibition of biofilm metabolic activity in some cases. In addition, chitosan caused rapid cellular damage and enhanced antihaemolytic activity of tetracycline in combination towards S. epidermidis biofilm cells. Chitosan efficiently inhibited S. epidermidis growth acting via cell membrane damage, yet the extent of antimicrobial and antibiofilm activities was quite strain-specific. It was proved to be a very efficient antimicrobial agent worth further examination as a potent candidate in pharmaceutical research. Apart from antimicrobial activity, it also acted as antivirulence enhancing agent which is a very promising strategy for alternative infectious diseases treatment.
- MeSH
- antibakteriální látky farmakologie MeSH
- antiinfekční látky * MeSH
- biofilmy MeSH
- buněčná membrána MeSH
- chitosan * farmakologie MeSH
- mikrobiální testy citlivosti MeSH
- molekulová hmotnost MeSH
- Staphylococcus epidermidis MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antiinfekční látky * MeSH
- chitosan * MeSH
We evaluated phytochemical composition, antibacterial, antifungal, anti-oxidant and cytotoxic properties of aqueous (water) and organic extracts (methanol, ethyl acetate and n-hexane) of Chenopodium glaucum. Highest phenolic content 45 mg gallic acid equivalents (GAE)/g d.w was found in aqueous extract followed by ethyl acetate (41mg GAE/g d.w) and methanol extract (34.46 mg GAE/g d.w). Antibacterial potential of aqueous and organic extracts of C. glaucum was examined against Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli and Staphylococcus epidermidis. The aqueous, methanolic, ethyl acetate, and n-hexane extract showed antibacterial activity against A. baumannii, K. pneumoniae, E. coli and S. epidermidis. However, against A. baumannii significantly higher inhibition zone (19 mm and 18.96 mm respectively) was shown by ethyl acetate and methanol extracts. Aqueous extract possessed highest growth inhibition (11 mm) against E. coli. Aqueous, ethyl acetate and methanol extracts showed 9 mm, 10 mm, and 10.33 mm zone of inhibition against the K. pneumoniae. For antifungal activity, the extracts were less effective against Aspergillus niger but showed strong antifungal activity against Aspergillus flavus (A. flavus). The antioxidant activity was measured as DPPH (2, 2-diphenyl-1-picrylhydrazyl), H2O2 and ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) scavenging activity of free radicals. All the organic extracts of C. glaucum possessed ABTS, DPPH and H2O2 scavenging properties. The highest cytotoxic activity measured as half maximal inhibitory concentration (IC50) against human lungs carcinoma cells was recorded for methanolic (IC50 = 16 μg/mL) and n-hexane (IC50 = 25 μg/mL) extracts, respectively. The Gas chromatography-mass spectrometry (GC-MS) analysis showed 4 major and 26 minor compounds in n-hexane extract and 4 major and 7 minor compounds in methanol extract of the C. glaucum. It is concluded that aqueous and organic extracts of C. glaucum would be potential therapeutic agents and could be exploited on a pilot scale to treat human pathogenic diseases.
- MeSH
- Acinetobacter baumannii účinky léků růst a vývoj MeSH
- antibakteriální látky farmakologie MeSH
- antifungální látky farmakologie MeSH
- antioxidancia farmakologie MeSH
- Aspergillus účinky léků růst a vývoj MeSH
- Chenopodium chemie MeSH
- cytotoxiny farmakologie MeSH
- Escherichia coli účinky léků růst a vývoj MeSH
- fytonutrienty farmakologie MeSH
- Klebsiella pneumoniae účinky léků růst a vývoj MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- nádorové buněčné linie MeSH
- nádory plic farmakoterapie MeSH
- protinádorové látky farmakologie MeSH
- rostlinné extrakty farmakologie MeSH
- Staphylococcus epidermidis účinky léků růst a vývoj MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- odvolaná publikace MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- antifungální látky MeSH
- antioxidancia MeSH
- cytotoxiny MeSH
- fytonutrienty MeSH
- protinádorové látky MeSH
- rostlinné extrakty MeSH
Globally, the occurrence of biofilm associated infection has become an alarming menace to the medical fraternity because the thick exopolysaccharide layer encasing the biofilms makes the biofilm producing pathogens inherently resistant to antibiotics. Candida albicans, the most common pathogen among Candida spp. is the causative agent for superficial and invasive candidiasis. The morphological phase switching from yeast to hyphal form is one of the virulent traits of C. albicans critical for its pathogenicity. Owing to the emergence of antifungal resistance among this opportunistic fungus, there is a dire need for improvised alternative antifungal agents. In the present study, we have evaluated a biosurfactant from a marine bacterium for its biofilm disruption ability against C. albicans. This biosurfactant had the potential to disrupt biofilms as well as to inhibit the morphological transition from yeast to hyphae. In addition, this biosurfactant showed enhance disruption of mixed species biofilms of C. albicans and Staphylococcus epidermidis when combined with DNase isolated from marine bacteria. From the results obtained, it is evident that the biosurfactant could act as a potential antibiofilm agent against drug resistant C. albicans strains.
- MeSH
- antifungální látky farmakologie MeSH
- Bacteria * enzymologie MeSH
- biofilmy * účinky léků MeSH
- Candida albicans * účinky léků MeSH
- deoxyribonukleasy * metabolismus MeSH
- hyfy MeSH
- kandidóza mikrobiologie MeSH
- lidé MeSH
- Staphylococcus epidermidis účinky léků MeSH
- vodní organismy * enzymologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antifungální látky MeSH
- deoxyribonukleasy * MeSH
Staphylococcus epidermidis is a leading opportunistic pathogen causing nosocomial infections that is notable for its ability to form a biofilm and for its high rates of antibiotic resistance. It serves as a reservoir of multiple antimicrobial resistance genes that spread among the staphylococcal population by horizontal gene transfer such as transduction. While phage-mediated transduction is well studied in Staphylococcus aureus, S. epidermidis transducing phages have not been described in detail yet. Here, we report the characteristics of four phages, 27, 48, 456, and 459, previously used for S. epidermidis phage typing, and the newly isolated phage E72, from a clinical S. epidermidis strain. The phages, classified in the family Siphoviridae and genus Phietavirus, exhibited an S. epidermidis-specific host range, and together they infected 49% of the 35 strains tested. A whole-genome comparison revealed evolutionary relatedness to transducing S. aureus phietaviruses. In accordance with this, all the tested phages were capable of transduction with high frequencies up to 10-4 among S. epidermidis strains from different clonal complexes. Plasmids with sizes from 4 to 19 kb encoding resistance to streptomycin, tetracycline, and chloramphenicol were transferred. We provide here the first evidence of a phage-inducible chromosomal island transfer in S. epidermidis Similarly to S. aureus pathogenicity islands, the transfer was accompanied by phage capsid remodeling; however, the interfering protein encoded by the island was distinct. Our findings underline the role of S. epidermidis temperate phages in the evolution of S. epidermidis strains by horizontal gene transfer, which can also be utilized for S. epidermidis genetic studies.IMPORTANCE Multidrug-resistant strains of S. epidermidis emerge in both nosocomial and livestock environments as the most important pathogens among coagulase-negative staphylococcal species. The study of transduction by phages is essential to understanding how virulence and antimicrobial resistance genes spread in originally commensal bacterial populations. In this work, we provide a detailed description of transducing S. epidermidis phages. The high transduction frequencies of antimicrobial resistance plasmids and the first evidence of chromosomal island transfer emphasize the decisive role of S. epidermidis phages in attaining a higher pathogenic potential of host strains. To date, such importance has been attributed only to S. aureus phages, not to those of coagulase-negative staphylococci. This study also proved that the described transducing bacteriophages represent valuable genetic modification tools in S. epidermidis strains where other methods for gene transfer fail.
- Klíčová slova
- Staphylococcus epidermidis, antibiotic resistance, bacteriophages, horizontal gene transfer, pathogenicity islands, transduction,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence genetika MeSH
- genomové ostrovy genetika MeSH
- lidé MeSH
- plazmidy genetika MeSH
- stafylokokové bakteriofágy klasifikace účinky léků genetika MeSH
- stafylokokové infekce mikrobiologie MeSH
- Staphylococcus epidermidis účinky léků virologie MeSH
- transdukce genetická * MeSH
- virulence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH