In this study, we experimentally evaluated how the feeding behaviour of marbled crayfish Procambarus virginalis is influenced by cues from conspecifics and the round goby Neogobius melanostomus, a fish predator, in tanks that permitted chemical communication but not visual recognition. We used four experimental groups with different combinations in two sub-tanks. The first sub-tank always contained a crayfish and prey (40 individuals of the water louse Asellus aquaticus). The other sub-tanks were set up as follows: (i) empty, serving as a control (C); (ii) with a conspecific crayfish (Cr); (iii) with a round goby (G) to simulate predator-only odour; and (iv) a round goby and three small conspecific crayfish (G + Cr) to simulate the presence of a predator and/or the alarm odour. Two sub-treatments were defined for the fourth group, categorised as 'injured' or 'not injured' depending on whether prey crayfish were visibly injured or not, respectively. We observed a significant decline in the consumption of water lice in the G and G + Cr treatments compared to the C and Cr treatments (up to 47% on average). There were no significant differences in consumption between the G and G + Cr treatments, or C and Cr treatments. No significant differences in food consumption parameters were detected between sub-treatments with 'injured' and 'not injured' conspecific crayfish. Knowledge of modifications in the feeding behaviour of marbled crayfish in the presence of round goby (and fish predators in general) is essential for ecologists attempting to understand the changes and impacts occurring in invaded freshwater ecosystems.
- MeSH
- ekosystém * MeSH
- Perciformes * MeSH
- podněty MeSH
- predátorské chování MeSH
- ryby MeSH
- severní raci MeSH
- voda MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- voda MeSH
Biodiesel is a mixture of esters of fatty acids (most often palmitic, stearic and oleic) and lower alcohols (in our work butanol) produced by transesterification. It is a renewable source of energy, prepared from triacylglycerides, which are contained in vegetable oils and animal fats. This work focuses on alkaline catalyzed transesterification of rapeseed oil with butanol and comparison of two catalysts (potassium hydroxide and potassium tert-butoxide). In industry is usually transesterification of rapeseed oil carried out like reaction catalyzed by potassium hydroxide. Potassium hydroxide have high content of K2CO3, KHCO3 and water. Moreover water is formed by neutralization of potassium hydroxide with free fatty acids contained in oil. In cause of tert-butoxide catalyzed reaction, it is not possible because tert-butoxide have not a OH- aniont, which is needed for water forming. The influence of various conditions (addition of water, temperature of separation, intensity of stirring and type of catalyst) on butanolysis process was studied for both catalysts. For both catalysts dependence of conversions on time were plotted. When tert-butoxide was used, satisfactory phase separation was not achieved. The only way was separation of hot crude reaction mixture without adding water. Ester formed by this method had high content of free glycerol and soaps, but reached higher conversion. The best results were obtained with KOH and subsequent separation of cold crude reaction mixture with the addition of water and slow stirring. The difference between reactions catalyzed by potassium hydroxide and potassium tert-butoxide was described.
- Klíčová slova
- Biodiesel, Butanol, KOH, Rapeseed oil, Separation, Transesterification,
- MeSH
- biopaliva * MeSH
- butanoly * MeSH
- hydroxidy * MeSH
- katalýza MeSH
- kyseliny mastné mononenasycené MeSH
- olej z řepky MeSH
- oleje rostlin MeSH
- sloučeniny draslíku * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biopaliva * MeSH
- butanoly * MeSH
- hydroxidy * MeSH
- kyseliny mastné mononenasycené MeSH
- olej z řepky MeSH
- oleje rostlin MeSH
- potassium hydroxide MeSH Prohlížeč
- sloučeniny draslíku * MeSH
- tert-butoxide, potassium MeSH Prohlížeč