BACKGROUND AND OBJECTIVES: Chronic inflammatory demyelinating polyneuropathy (CIDP) is an autoimmune disease primarily affecting the peripheral nervous system. However, several noncontrolled studies have suggested concomitant inflammatory CNS demyelination similar to multiple sclerosis. The aim of this study was to investigate an involvement of the visual pathway in patients with CIDP. METHODS: In this prospective cross-sectional study, we used high-resolution spectral-domain optical coherence tomography to compare the thickness of the peripapillary retinal nerve fiber layer and the deeper macular retinal layers as well as the total macular volume (TMV) in 22 patients with CIDP and 22 age-matched and sex-matched healthy control (HC) individuals. Retinal layers were semiautomatically segmented by the provided software and were correlated with clinical measures and nerve conduction studies. RESULTS: In patients with CIDP compared with healthy age-matched and sex-matched controls, we found slight but significant volume reductions of the ganglion cell/inner plexiform layer complex (CIDP 1.86 vs HC 1.95 mm3, p = 0.015), the retinal pigment epithelium (CIDP 0.38 vs HC 0.40 mm3, p = 0.02), and the TMV (CIDP 8.48 vs HC 8.75 mm3, p = 0.018). The ganglion cell layer volume and motor nerve conduction velocity were positively associated (B = 0.002, p = 0.02). DISCUSSION: Our data reveal subtle retinal neurodegeneration in patients with CIDP, providing evidence for visual pathway involvement, detectable by OCT. The results need corroboration in independent, larger cohorts.
- MeSH
- chronická zánětlivá demyelinizační polyneuropatie diagnostické zobrazování patologie patofyziologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- nervové vedení fyziologie MeSH
- optická koherentní tomografie MeSH
- prospektivní studie MeSH
- průřezové studie MeSH
- retina diagnostické zobrazování patologie MeSH
- senioři MeSH
- zrakové dráhy diagnostické zobrazování patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell-extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.
- Klíčová slova
- axon targeting, development, extracellular matrix, retina, superior colliculus,
- MeSH
- axony fyziologie MeSH
- colliculus superior cytologie metabolismus fyziologie MeSH
- extracelulární matrix fyziologie MeSH
- integriny metabolismus MeSH
- mozek fyziologie MeSH
- myši MeSH
- retinální gangliové buňky fyziologie MeSH
- signální transdukce MeSH
- zrakové dráhy * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- integriny MeSH
The spatial organization and dynamic interactions between excitatory and inhibitory synaptic inputs that define the receptive field (RF) of simple cells in the cat primary visual cortex (V1) still raise the following paradoxical issues: (1) stimulation of simple cells in V1 with drifting gratings supports a wiring schema of spatially segregated sets of excitatory and inhibitory inputs activated in an opponent way by stimulus contrast polarity and (2) in contrast, intracellular studies using flashed bars suggest that although ON and OFF excitatory inputs are indeed segregated, inhibitory inputs span the entire RF regardless of input contrast polarity. Here, we propose a biologically detailed computational model of simple cells embedded in a V1-like network that resolves this seeming contradiction. We varied parametrically the RF-correlation-based bias for excitatory and inhibitory synapses and found that a moderate bias of excitatory neurons to synapse onto other neurons with correlated receptive fields and a weaker bias of inhibitory neurons to synapse onto other neurons with anticorrelated receptive fields can explain the conductance input, the postsynaptic membrane potential, and the spike train dynamics under both stimulation paradigms. This computational study shows that the same structural model can reproduce the functional diversity of visual processing observed during different visual contexts.SIGNIFICANCE STATEMENT Identifying generic connectivity motives in cortical circuitry encoding for specific functions is crucial for understanding the computations implemented in the cortex. Indirect evidence points to correlation-based biases in the connectivity pattern in V1 of higher mammals, whereby excitatory and inhibitory neurons preferentially synapse onto neurons respectively with correlated and anticorrelated receptive fields. A recent intracellular study questions this push-pull hypothesis, failing to find spatial anticorrelation patterns between excitation and inhibition across the receptive field. We present here a spiking model of V1 that integrates relevant anatomic and physiological constraints and shows that a more versatile motif of correlation-based connectivity with selectively tuned excitation and broadened inhibition is sufficient to account for the diversity of functional descriptions obtained for different classes of stimuli.
- Klíčová slova
- circuits, conductance analysis, cortex, primary visual cortex, push–pull, spiking model,
- MeSH
- akční potenciály fyziologie MeSH
- kočky MeSH
- modely neurologické * MeSH
- nervový přenos fyziologie MeSH
- nervový útlum fyziologie MeSH
- neurony fyziologie MeSH
- synapse fyziologie MeSH
- zraková percepce fyziologie MeSH
- zrakové dráhy fyziologie MeSH
- zrakové korové centrum fyziologie MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Members of the POU4F/Brn3 transcription factor family have an established role in the development of retinal ganglion cell (RGCs) types, the main transducers of visual information from the mammalian eye to the brain. Our previous work using sparse random recombination of a conditional knock-in reporter allele expressing alkaline phosphatase (AP) and intersectional genetics had identified three types of Brn3c positive (Brn3c+ ) RGCs. Here, we describe a novel Brn3cCre mouse allele generated by serial Dre to Cre recombination and use it to explore the expression overlap of Brn3c with Brn3a and Brn3b and the dendritic arbor morphologies and visual stimulus response properties of Brn3c+ RGC types. Furthermore, we explore brain nuclei that express Brn3c or receive input from Brn3c+ neurons. Our analysis reveals a much larger number of Brn3c+ RGCs and more diverse set of RGC types than previously reported. Most RGCs expressing Brn3c during development are still Brn3c positive in the adult, and all express Brn3a while only about half express Brn3b. Genetic Brn3c-Brn3b intersection reveals an area of increased RGC density, extending from dorsotemporal to ventrolateral across the retina and overlapping with the mouse binocular field of view. In addition, we report a Brn3c+ RGC projection to the thalamic reticular nucleus, a visual nucleus that was not previously shown to receive retinal input. Furthermore, Brn3c+ neurons highlight a previously unknown subdivision of the deep mesencephalic nucleus. Thus, our newly generated allele provides novel biological insights into RGC type classification, brain connectivity, and cytoarchitectonic.
- Klíčová slova
- Brn3c, Cre recombinase, Pou4f3, deep mesencephalic nucleus, periaqueductal gray, retinal ganglion cells, superior colliculus, thalamic reticular nucleus, transcription factor,
- MeSH
- alely MeSH
- genový knockin metody MeSH
- homeodoménové proteiny genetika metabolismus MeSH
- integrasy MeSH
- mozek cytologie metabolismus MeSH
- myši MeSH
- retinální gangliové buňky cytologie metabolismus MeSH
- transkripční faktor Brn-3C genetika metabolismus MeSH
- zrakové dráhy cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- Cre recombinase MeSH Prohlížeč
- homeodoménové proteiny MeSH
- integrasy MeSH
- Pou4f3 protein, mouse MeSH Prohlížeč
- transkripční faktor Brn-3C MeSH
The neural encoding of visual features in primary visual cortex (V1) is well understood, with strong correlates to low-level perception, making V1 a strong candidate for vision restoration through neuroprosthetics. However, the functional relevance of neural dynamics evoked through external stimulation directly imposed at the cortical level is poorly understood. Furthermore, protocols for designing cortical stimulation patterns that would induce a naturalistic perception of the encoded stimuli have not yet been established. Here, we demonstrate a proof of concept by solving these issues through a computational model, combining (1) a large-scale spiking neural network model of cat V1 and (2) a virtual prosthetic system transcoding the visual input into tailored light-stimulation patterns which drive in situ the optogenetically modified cortical tissue. Using such virtual experiments, we design a protocol for translating simple Fourier contrasted stimuli (gratings) into activation patterns of the optogenetic matrix stimulator. We then quantify the relationship between spatial configuration of the imposed light pattern and the induced cortical activity. Our simulations in the absence of visual drive (simulated blindness) show that optogenetic stimulation with a spatial resolution as low as 100 [Formula: see text]m, and light intensity as weak as [Formula: see text] photons/s/cm[Formula: see text] is sufficient to evoke activity patterns in V1 close to those evoked by normal vision.
- MeSH
- lidé MeSH
- oční protézy MeSH
- optogenetika metody MeSH
- ověření koncepční studie MeSH
- světelná stimulace metody MeSH
- teoretické modely MeSH
- zraková percepce MeSH
- zrakové dráhy MeSH
- zrakové korové centrum fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
To understand how anatomy and physiology allow an organism to perform its function, it is important to know how information that is transmitted by spikes in the brain is received and encoded. A natural question is whether the spike rate alone encodes the information about a stimulus (rate code), or additional information is contained in the temporal pattern of the spikes (temporal code). Here we address this question using data from the cat Lateral Geniculate Nucleus (LGN), which is the visual portion of the thalamus, through which visual information from the retina is communicated to the visual cortex. We analyzed the responses of LGN neurons to spatially homogeneous spots of various sizes with temporally random luminance modulation. We compared the Firing Rate with the Shannon Information Transmission Rate , which quantifies the information contained in the temporal relationships between spikes. We found that the behavior of these two rates can differ quantitatively. This suggests that the energy used for spiking does not translate directly into the information to be transmitted. We also compared Firing Rates with Information Rates for X-ON and X-OFF cells. We found that, for X-ON cells the Firing Rate and Information Rate often behave in a completely different way, while for X-OFF cells these rates are much more highly correlated. Our results suggest that for X-ON cells a more efficient "temporal code" is employed, while for X-OFF cells a straightforward "rate code" is used, which is more reliable and is correlated with energy consumption.
- Klíčová slova
- Cat LGN, Entropy, Firing rate, Neural coding, ON–OFF cells, Shannon information theory,
- MeSH
- akční potenciály fyziologie MeSH
- duševní procesy fyziologie MeSH
- kočky MeSH
- metathalamus cytologie fyziologie MeSH
- neurony fyziologie MeSH
- světelná stimulace metody MeSH
- zrakové dráhy cytologie fyziologie MeSH
- zrakové korové centrum cytologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- kočky MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- srovnávací studie MeSH
UNLABELLED: Single cases may lead to unexpected hypotheses in psychology. We retrospectively analyzed single case studies that suggested organizational principles along the early visual pathway, which have remained unanswered until now. FIRST CASE: In spite of the inhomogeneity of sensitivity, paradoxically the visual field on the subjective level appears to be homogeneous; constancy of brightness of supra-threshold stimuli throughout the visual field is claimed to be responsible for homogeneity; specific summation properties of retinal ganglion cells are hypothesized to guarantee this effect. SECOND CASE: With a brain-injured patient having suffered a partial visual field loss it can be shown that color induction is a retinal phenomenon; lateral inhibitory processes at the level of amacrine cells are hypothesized as neural network. Third case: In a patient having suffered a bilateral occipital lobe infarction, some functional recovery has been demonstrated; divergence and convergence of projection in the ascending neural pathway are suggested as a structural basis for recovery. Slowed down binocular rivalry discloses a sequential mechanism in the construction of a visual percept. Fourth case: The pre-wired projection of the retina to the visual cortex in spite of a severe squint of one eye is confirmed, but paradoxically some local neuroplasticity is also suggested. Fifth case: Using habituation of local sensitivity in the visual field and its resetting by interhemispheric interactions as an experimental paradigm, it is suggested that spatial attention is controlled at the midbrain level. Sixth case: Observations on residual vision or "blindsight" support the hypothesis that the visual cortex is the one and only structure responsible for visual perception on a conscious level. The unifying principle of these retrospective analyses is that subjective visual phenomena can lead to unexpected but testable hypotheses of neural processing on the structural and functional level in the early visual pathway.
- Klíčová slova
- attentional control, binocular rivalry, blindsight, brightness perception, color perception, consciousness, eccentricity effect, habituation, neuroplasticity, restitution of function,
- MeSH
- lidé MeSH
- metathalamus fyziologie MeSH
- mozkový infarkt patofyziologie MeSH
- poranění mozku patofyziologie MeSH
- pozornost fyziologie MeSH
- retina fyziologie MeSH
- retrospektivní studie MeSH
- slepota patofyziologie MeSH
- světelná stimulace MeSH
- vnímání barev MeSH
- zraková pole * MeSH
- zrakové dráhy fyziologie MeSH
- zrakové korové centrum fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Animals often change their habitat throughout ontogeny; yet, the triggers for habitat transitions and how these correlate with developmental changes - e.g. physiological, morphological and behavioural - remain largely unknown. Here, we investigated how ontogenetic changes in body coloration and of the visual system relate to habitat transitions in a coral reef fish. Adult dusky dottybacks, Pseudochromis fuscus, are aggressive mimics that change colour to imitate various fishes in their surroundings; however, little is known about the early life stages of this fish. Using a developmental time series in combination with the examination of wild-caught specimens, we revealed that dottybacks change colour twice during development: (i) nearly translucent cryptic pelagic larvae change to a grey camouflage coloration when settling on coral reefs; and (ii) juveniles change to mimic yellow- or brown-coloured fishes when reaching a size capable of consuming juvenile fish prey. Moreover, microspectrophotometric (MSP) and quantitative real-time PCR (qRT-PCR) experiments show developmental changes of the dottyback visual system, including the use of a novel adult-specific visual gene (RH2 opsin). This gene is likely to be co-expressed with other visual pigments to form broad spectral sensitivities that cover the medium-wavelength part of the visible spectrum. Surprisingly, the visual modifications precede changes in habitat and colour, possibly because dottybacks need to first acquire the appropriate visual performance before transitioning into novel life stages.
- Klíčová slova
- Co-expression, Colour change, Development, Gene duplication, Opsin, Vision,
- MeSH
- barva MeSH
- biologické modely MeSH
- časové faktory MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- fyziologická adaptace MeSH
- korálové útesy * MeSH
- kůže cytologie MeSH
- kvantitativní znak dědičný MeSH
- mimikry * MeSH
- opsiny genetika MeSH
- pigmentace fyziologie MeSH
- predátorské chování MeSH
- regulace genové exprese MeSH
- ryby růst a vývoj fyziologie MeSH
- zrak fyziologie MeSH
- zrakové dráhy fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
- Názvy látek
- opsiny MeSH
Audio-visual integration has been shown to be present in a wide range of different conditions, some of which are processed through the dorsal, and others through the ventral visual pathway. Whereas neuroimaging studies have revealed integration-related activity in the brain, there has been no imaging study of the possible role of segregated visual streams in audio-visual integration. We set out to determine how the different visual pathways participate in this communication. We investigated how audio-visual integration can be supported through the dorsal and ventral visual pathways during the double flash illusion. Low-contrast and chromatic isoluminant stimuli were used to drive preferably the dorsal and ventral pathways, respectively. In order to identify the anatomical substrates of the audio-visual interaction in the two conditions, the psychophysical results were correlated with the white matter integrity as measured by diffusion tensor imaging.The psychophysiological data revealed a robust double flash illusion in both conditions. A correlation between the psychophysical results and local fractional anisotropy was found in the occipito-parietal white matter in the low-contrast condition, while a similar correlation was found in the infero-temporal white matter in the chromatic isoluminant condition. Our results indicate that both of the parallel visual pathways may play a role in the audio-visual interaction.
- Klíčová slova
- DTI, Doubleflash, MRI, Multisensory, TBSS,
- MeSH
- akustická stimulace MeSH
- anizotropie MeSH
- bílá hmota fyziologie MeSH
- dospělí MeSH
- lidé MeSH
- mapování mozku MeSH
- sluchová percepce fyziologie MeSH
- světelná stimulace MeSH
- teorie detekce signálu fyziologie MeSH
- zobrazování difuzních tenzorů MeSH
- zobrazování trojrozměrné MeSH
- zraková percepce fyziologie MeSH
- zrakové dráhy fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Standard pattern-reversal visual evoked potentials (VEPs) and motion-onset VEPs (M-VEPs) were tested in 19 dyslexics and 19 normal readers aged 7-13 years in order to evaluate the feasibility of M-VEPs for the objective diagnostics of a visual subtype of dyslexia, in which a dysfunction of the magnocellular subsystem/dorsal stream of the visual pathway is suspected. The set of VEPs consisted of the pattern-reversal VEPs with check sizes of 20', two types of translational motion (with low and high contrast) and two types of radial motion (in the full field or the periphery). While the P100 peak parameters in pattern-reversal VEPs did not differ between the group of dyslexics and controls, the group of dyslexics displayed significantly longer N2 latencies in all types of M-VEPs. Abnormal N2 latencies were found in 35-56% of dyslexics in different types of M-VEPs, with translational motion with high contrast being the most sensitive stimulation. A receiver operating characteristic analysis showed that the latencies of M-VEPs displayed higher discrimination potential than M-VEPs amplitudes. The study confirms a "magnocellular pathway/dorsal stream deficit" in approximately half of dyslexics.
- Klíčová slova
- Children, Dorsal stream deficit, Dyslexia, Magnocellular system deficit, Motion-onset VEPs, Visual evoked potentials (VEPs),
- MeSH
- dítě MeSH
- dyslexie patofyziologie MeSH
- lidé MeSH
- mladiství MeSH
- senzorické prahy fyziologie MeSH
- studie případů a kontrol MeSH
- vnímání pohybu fyziologie MeSH
- zrakové dráhy patofyziologie MeSH
- zrakové evokované potenciály fyziologie MeSH
- zrakové korové centrum fyziologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH